Research Article
BibTex RIS Cite

On Quasi-Sasakian Manifolds

Year 2019, , 33 - 39, 17.06.2019
https://doi.org/10.33401/fujma.527465

Abstract

In this paper we study three-dimensional quasi-Sasakian manifolds admitting the Schouten-van Kampen connection. Also, we study D-homothetic deformations on three-dimensional quasi-Sasakian manifolds admitting Schouten-van connection and projectively flat three-dimensional quasi-Sasakian manifolds admitting scv connection.

References

  • [1] D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geo., 1(3-4) (1967), 331-345.
  • [2] S. Tanno, Quasi-Sasakian structure of rank 2p+1, J. Differential Geom., 5(3-4) (1971), 317-324.
  • [3] Z. Olszak, On three dimensional conformally flat quasi-Sasakian manifolds, Period Math. Hungar., 33(2) (1996), 105-113.
  • [4] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L’inst. Math., 94(108) (2013), 31-42.
  • [5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. De L’Inst. Math., 102(116) (2017), 93-105.
  • [6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics Vol. 509, Springer-Verlag, Berlin-New York, 1976.
  • [7] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birkh¨auser, Boston, 2002.
  • [8] K. Yano, M. Kon, Structures on Manifolds, World Scientific, 1984.
  • [9] Z. Olszak, Normal almost contact metric manifolds of dimension 3, Ann. Polon. Math., 1(47) (1986), 41-50.
  • [10] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4(1) (1981), 1-27.
Year 2019, , 33 - 39, 17.06.2019
https://doi.org/10.33401/fujma.527465

Abstract

References

  • [1] D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geo., 1(3-4) (1967), 331-345.
  • [2] S. Tanno, Quasi-Sasakian structure of rank 2p+1, J. Differential Geom., 5(3-4) (1971), 317-324.
  • [3] Z. Olszak, On three dimensional conformally flat quasi-Sasakian manifolds, Period Math. Hungar., 33(2) (1996), 105-113.
  • [4] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L’inst. Math., 94(108) (2013), 31-42.
  • [5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. De L’Inst. Math., 102(116) (2017), 93-105.
  • [6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics Vol. 509, Springer-Verlag, Berlin-New York, 1976.
  • [7] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birkh¨auser, Boston, 2002.
  • [8] K. Yano, M. Kon, Structures on Manifolds, World Scientific, 1984.
  • [9] Z. Olszak, Normal almost contact metric manifolds of dimension 3, Ann. Polon. Math., 1(47) (1986), 41-50.
  • [10] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4(1) (1981), 1-27.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ahmet Sazak This is me 0000-0002-5620-6441

Ahmet Yıldız 0000-0002-9799-1781

Publication Date June 17, 2019
Submission Date February 15, 2019
Acceptance Date March 22, 2019
Published in Issue Year 2019

Cite

APA Sazak, A., & Yıldız, A. (2019). On Quasi-Sasakian Manifolds. Fundamental Journal of Mathematics and Applications, 2(1), 33-39. https://doi.org/10.33401/fujma.527465
AMA Sazak A, Yıldız A. On Quasi-Sasakian Manifolds. Fundam. J. Math. Appl. June 2019;2(1):33-39. doi:10.33401/fujma.527465
Chicago Sazak, Ahmet, and Ahmet Yıldız. “On Quasi-Sasakian Manifolds”. Fundamental Journal of Mathematics and Applications 2, no. 1 (June 2019): 33-39. https://doi.org/10.33401/fujma.527465.
EndNote Sazak A, Yıldız A (June 1, 2019) On Quasi-Sasakian Manifolds. Fundamental Journal of Mathematics and Applications 2 1 33–39.
IEEE A. Sazak and A. Yıldız, “On Quasi-Sasakian Manifolds”, Fundam. J. Math. Appl., vol. 2, no. 1, pp. 33–39, 2019, doi: 10.33401/fujma.527465.
ISNAD Sazak, Ahmet - Yıldız, Ahmet. “On Quasi-Sasakian Manifolds”. Fundamental Journal of Mathematics and Applications 2/1 (June 2019), 33-39. https://doi.org/10.33401/fujma.527465.
JAMA Sazak A, Yıldız A. On Quasi-Sasakian Manifolds. Fundam. J. Math. Appl. 2019;2:33–39.
MLA Sazak, Ahmet and Ahmet Yıldız. “On Quasi-Sasakian Manifolds”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 1, 2019, pp. 33-39, doi:10.33401/fujma.527465.
Vancouver Sazak A, Yıldız A. On Quasi-Sasakian Manifolds. Fundam. J. Math. Appl. 2019;2(1):33-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a