Research Article
BibTex RIS Cite
Year 2020, , 94 - 100, 15.12.2020
https://doi.org/10.33401/fujma.733415

Abstract

References

  • [1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203, Boston, MA: Birkhauser Boston, Inc., 2002.
  • [2] D. E. Blair, T. Koufogiorgos, B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • [3] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.
  • [4] D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • [5] S. Ghosh, U. C. De, A. Taleshian, Conharmonic curvature tensor on N(k)-contact metric manifolds, ISRN Geometry, (2011), Art. ID 423798, 11 pages.
  • [6] A. Kazan, S. Kazan Sasakian statistical manifolds with semi-symmetric metric Connection, Univers. J. Math. Appl., 1(4) (2018), 226-232.
  • [7] M. Y. Yılmaz, M. Bektas¸, Curvature inequalities between a Hessian manifold with constant curvature and its submanifolds, Math. Sci. Appl. E-Notes, 5 (1) (2017), 27-33.
  • [8] U. C. De, A. K. Gazi, On f-recurrent N(k)-contact metric manifolds, Math. J. Okayama Univ., 50 (2008), 101-112.
  • [9] C. Özgur, S. Sular, On N(k)-contact metric manifolds satisfying certain conditions, Sut. J. Math., 44 (2008), 89-99.
  • [10] N. S. Agashe, M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian Manifold, Indian J. Pure Appl. Math., 23(6) (1992), 399-409.
  • [11] A. Vanlı Turgut, İ. Ünal, D. Özdemir, Normal complex contact metric manifolds admitting a semi symmetric metric connection, Applied Mathematics and Nonlinear Sciences 5(2) (2020), 49-66.
  • [12] A. Barman, Semi-symmetric non-metric connection in a P-Sasakian manifold, Novi Sad J. Math., 43 (2013), 117-124.
  • [13] A. Barman, U. C. De, Semi-symmetric non-metric connections on Kenmotsu manifolds, Romanian J. Math. and Comp. Sci., 5 (2014), 13-24.
  • [14] U. C. De, S. C. Biswas, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Ganita, 48 (1997), 91-94.
  • [15] O. C. Andonie, On semi-symmetric non-metric connection on a Riemannian manifold, Ann. Fac. Sci. De Kinshasa, Zaire Sect. Math. Phys., 2 (1976).
  • [16] P. Majhi, U. C. De, Classifications on N(k)-contact metric manifolds satisfying certain curvature conditions, Acta Math. Univ. Comenianae, 84 (2015), 167-178.
  • [17] G.Ayar, S. K.Chaubey, M-projective curvature tensor over cosymplectic manifolds, Differential Geometry-Dynamical Systems, 21 (2019), 23-33.
  • [18] G. Ayar, P. Tekin, N. Aktan, Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian J. Industrial Appl. Math., 10 (2019), 51-60.
  • [19] G. Ayar and D. Demirhan, Ricci Solitons on Nearly Kenmotsu Manifolds with Semi symmetric Metric Connection, J. Eng. Tech. Appl. Sci., 4(3) (2019), 131–140.
  • [20] A. Turgut Vanli, İ. Ünal, Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds, Int. J. Geom. Methods Mod. Phys., 14(05) (2017), 1750067.
  • [21] İ. Ünal, R. Sarı, A. Vanlı Turgut, Concircular curvature tensor on generalized kenmotsu manifolds, Gu¨mu¨s¸hane U¨ niversitesi Fen Bilimleri Enstitüsü Dergisi, (2018), 99-105.
  • [22] A.Turgut Vanli, İ. Ünal, H-curvature tensors on IK-normal complex contact metric manifolds, International Journal of Geometric Methods in Modern Physics, 15(12) (2018) 1850205.
  • [23] A. Yıldız, U. C. De, M. Cengizhan, K. Arslan, On the Weyl projective curvature tensor of an N(k) -contact metric manifold, Mathematica Pannonica, 21(1) (2010), 1-14.
  • [24] A. Barman, On N(k)-contact metric manifolds admitting a type of a semi-symmetric non-metric connection, Acta Math. Univ. Comenianae, LXXXVI 1 (2017), 81-90.
  • [25] E. Boeckx, A full classification of concat metric (k;m)-spaces, Illinois J. Math., 44 (2000), 212-219.
  • [26] D. E.Blair, J. S. Kim, M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42 (2005), 883-892.

Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection

Year 2020, , 94 - 100, 15.12.2020
https://doi.org/10.33401/fujma.733415

Abstract

The object of the present paper is to classify $N(\kappa)$-contact metric manifolds admitting the semi-symmetric non-metric connection with certain curvature conditions the projectively curvature tensor. We studied projective flat, $\xi- $projectively flat, $\phi- $projectively flat $N(\kappa )$-contact metric manifolds admitting the semi-symmetric non-metric connection. Also, we examine such manifolds under some local symmetry conditions related to projective curvature tensor.

References

  • [1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203, Boston, MA: Birkhauser Boston, Inc., 2002.
  • [2] D. E. Blair, T. Koufogiorgos, B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • [3] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.
  • [4] D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • [5] S. Ghosh, U. C. De, A. Taleshian, Conharmonic curvature tensor on N(k)-contact metric manifolds, ISRN Geometry, (2011), Art. ID 423798, 11 pages.
  • [6] A. Kazan, S. Kazan Sasakian statistical manifolds with semi-symmetric metric Connection, Univers. J. Math. Appl., 1(4) (2018), 226-232.
  • [7] M. Y. Yılmaz, M. Bektas¸, Curvature inequalities between a Hessian manifold with constant curvature and its submanifolds, Math. Sci. Appl. E-Notes, 5 (1) (2017), 27-33.
  • [8] U. C. De, A. K. Gazi, On f-recurrent N(k)-contact metric manifolds, Math. J. Okayama Univ., 50 (2008), 101-112.
  • [9] C. Özgur, S. Sular, On N(k)-contact metric manifolds satisfying certain conditions, Sut. J. Math., 44 (2008), 89-99.
  • [10] N. S. Agashe, M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian Manifold, Indian J. Pure Appl. Math., 23(6) (1992), 399-409.
  • [11] A. Vanlı Turgut, İ. Ünal, D. Özdemir, Normal complex contact metric manifolds admitting a semi symmetric metric connection, Applied Mathematics and Nonlinear Sciences 5(2) (2020), 49-66.
  • [12] A. Barman, Semi-symmetric non-metric connection in a P-Sasakian manifold, Novi Sad J. Math., 43 (2013), 117-124.
  • [13] A. Barman, U. C. De, Semi-symmetric non-metric connections on Kenmotsu manifolds, Romanian J. Math. and Comp. Sci., 5 (2014), 13-24.
  • [14] U. C. De, S. C. Biswas, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Ganita, 48 (1997), 91-94.
  • [15] O. C. Andonie, On semi-symmetric non-metric connection on a Riemannian manifold, Ann. Fac. Sci. De Kinshasa, Zaire Sect. Math. Phys., 2 (1976).
  • [16] P. Majhi, U. C. De, Classifications on N(k)-contact metric manifolds satisfying certain curvature conditions, Acta Math. Univ. Comenianae, 84 (2015), 167-178.
  • [17] G.Ayar, S. K.Chaubey, M-projective curvature tensor over cosymplectic manifolds, Differential Geometry-Dynamical Systems, 21 (2019), 23-33.
  • [18] G. Ayar, P. Tekin, N. Aktan, Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian J. Industrial Appl. Math., 10 (2019), 51-60.
  • [19] G. Ayar and D. Demirhan, Ricci Solitons on Nearly Kenmotsu Manifolds with Semi symmetric Metric Connection, J. Eng. Tech. Appl. Sci., 4(3) (2019), 131–140.
  • [20] A. Turgut Vanli, İ. Ünal, Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds, Int. J. Geom. Methods Mod. Phys., 14(05) (2017), 1750067.
  • [21] İ. Ünal, R. Sarı, A. Vanlı Turgut, Concircular curvature tensor on generalized kenmotsu manifolds, Gu¨mu¨s¸hane U¨ niversitesi Fen Bilimleri Enstitüsü Dergisi, (2018), 99-105.
  • [22] A.Turgut Vanli, İ. Ünal, H-curvature tensors on IK-normal complex contact metric manifolds, International Journal of Geometric Methods in Modern Physics, 15(12) (2018) 1850205.
  • [23] A. Yıldız, U. C. De, M. Cengizhan, K. Arslan, On the Weyl projective curvature tensor of an N(k) -contact metric manifold, Mathematica Pannonica, 21(1) (2010), 1-14.
  • [24] A. Barman, On N(k)-contact metric manifolds admitting a type of a semi-symmetric non-metric connection, Acta Math. Univ. Comenianae, LXXXVI 1 (2017), 81-90.
  • [25] E. Boeckx, A full classification of concat metric (k;m)-spaces, Illinois J. Math., 44 (2000), 212-219.
  • [26] D. E.Blair, J. S. Kim, M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42 (2005), 883-892.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mustafa Altın 0000-0001-5544-5910

Publication Date December 15, 2020
Submission Date May 6, 2020
Acceptance Date August 18, 2020
Published in Issue Year 2020

Cite

APA Altın, M. (2020). Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection. Fundamental Journal of Mathematics and Applications, 3(2), 94-100. https://doi.org/10.33401/fujma.733415
AMA Altın M. Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection. Fundam. J. Math. Appl. December 2020;3(2):94-100. doi:10.33401/fujma.733415
Chicago Altın, Mustafa. “Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 94-100. https://doi.org/10.33401/fujma.733415.
EndNote Altın M (December 1, 2020) Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection. Fundamental Journal of Mathematics and Applications 3 2 94–100.
IEEE M. Altın, “Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 94–100, 2020, doi: 10.33401/fujma.733415.
ISNAD Altın, Mustafa. “Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 94-100. https://doi.org/10.33401/fujma.733415.
JAMA Altın M. Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection. Fundam. J. Math. Appl. 2020;3:94–100.
MLA Altın, Mustafa. “Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 94-100, doi:10.33401/fujma.733415.
Vancouver Altın M. Projective Curvature Tensor on N($\kappa$)-Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection. Fundam. J. Math. Appl. 2020;3(2):94-100.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a