Research Article
BibTex RIS Cite
Year 2020, , 137 - 143, 15.12.2020
https://doi.org/10.33401/fujma.785781

Abstract

References

  • [1] B. Y. Chen, J. Morvan, T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9 (1986), 406–418.
  • [2] B. Y. Chen, Total mean curvature and submanifolds finite type, World Scientific, New Jersey, 1984.
  • [3] O. J. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J., 11 (1988), 25–31.
  • [4] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
  • [5] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385.
  • [6] F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21.
  • [7] O. J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata, 34 (1990), 105–112.
  • [8] B. Senoussi, M. Bekkar, Helicoidal surfaces with DJ r = Ar in 3-dimensional Euclidean space, Stud. Univ. Babes-Bolyai Math., 60 (2015), 437–448.
  • [9] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math., 45 (2014), 87–108.
  • [10] M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. of Geo. 107(3) (2016), 603–615.
  • [11] M. E. Aydin, Constant curvature factorable surfaces in 3-dimensional isotropic space, J. Korean Math. Soc., 55 (1) (2018) 59–7.
  • [12] M. E. Aydin, A. Erdur, M. Ergut, Affine factorable surfaces in isotropic spaces, TWMS J. Pure Appl. Math., 11 (2020), 72–88.
  • [13] M. E. Aydin, I. Mihai, On certain surfaces in the isotropic 4-space, Math. Com., 22(1) (2017), 41-51.
  • [14] M. E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG proceedings 23, (2016) 1–10.
  • [15] A. Kelleci, L. C. B. da Silva, Invariant surfaces with coordinate finite-type Gauss map in simply isotropic space, J. Math. Anal. Appl., (in press).
  • [16] L. C. B. da Silva, The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces, J. of Geom., 110(2) (2019), 31.
  • [17] L. C. B. da Silva, Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces, Math. J. Okayama Univ., (in press).
  • [18] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces of type-2 in the three-dimensional simply isotropic space I13, Bull. Korean Math. Soc., 54 (2017), 953–965.
  • [19] A. Cakmak, M. K. Karacan, S. Kiziltug, Dual surfaces defined by z = f (u)+g(v) in simply isotropic 3-space I13, Commun. Korean Math. Soc., 34 (2019), 267–277.
  • [20] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces in the three-dimensional simply isotropic space I13 satisfying DIIIxi = lixi, Konuralp J. Math., 4 (2016), 275–281.
  • [21] M. K. Karacan, D. W. Yoon, B. Bukcu, Translation surfaces in the three-dimensional simply isotropic space I13, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650088.
  • [22] M. K. Karacan, D. W. Yoon, B. Bukcu, Surfaces of revolution in the three-dimensional simply isotropic space I13, Asia Pac. J. Math., 4 (2017), 1–10.
  • [23] M. E. Aydin, M. Ergut, Affine translation surfaces in the isotropic 3-space, Int. Electron. J. Geom., 10 (2017), 21–30.
  • [24] M. K. Karacan, D. W. Yoon, S. Kiziltug, Helicoidal surfaces in the three-dimensional simply isotropic space, I13, Tamkang J. Math., 48 (2017), 123–134.
  • [25] M. K. Karacan, D. W. Yoon, N. Yuksel, Classification of some special types ruled surfaces in simply isotropic 3-space, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica, 55 (2017), 87–98.
  • [26] H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.

Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces

Year 2020, , 137 - 143, 15.12.2020
https://doi.org/10.33401/fujma.785781

Abstract

In this paper, we classify warped translation surfaces being invariant surfaces of i-type, that is, the generating curve has formed by the intersection of the surface with the isotropic xz-plane in the three-dimensional simply isotropic space $\mathbb I^3$ under the conditio$\Delta^{J}x_i=\lambda_i x_i,$  with J=I,II.  Here, $\Delta^{J}$ is the Laplace operator with respect to first and second fundamental form and $\lambda_i$, $i=1,2,3$ are some real numbers. Also, as an application, we give some examples for these surfaces and also some explicit graphics of them. All graphics have been plotted with Maple14.

References

  • [1] B. Y. Chen, J. Morvan, T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9 (1986), 406–418.
  • [2] B. Y. Chen, Total mean curvature and submanifolds finite type, World Scientific, New Jersey, 1984.
  • [3] O. J. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J., 11 (1988), 25–31.
  • [4] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
  • [5] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385.
  • [6] F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21.
  • [7] O. J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata, 34 (1990), 105–112.
  • [8] B. Senoussi, M. Bekkar, Helicoidal surfaces with DJ r = Ar in 3-dimensional Euclidean space, Stud. Univ. Babes-Bolyai Math., 60 (2015), 437–448.
  • [9] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math., 45 (2014), 87–108.
  • [10] M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. of Geo. 107(3) (2016), 603–615.
  • [11] M. E. Aydin, Constant curvature factorable surfaces in 3-dimensional isotropic space, J. Korean Math. Soc., 55 (1) (2018) 59–7.
  • [12] M. E. Aydin, A. Erdur, M. Ergut, Affine factorable surfaces in isotropic spaces, TWMS J. Pure Appl. Math., 11 (2020), 72–88.
  • [13] M. E. Aydin, I. Mihai, On certain surfaces in the isotropic 4-space, Math. Com., 22(1) (2017), 41-51.
  • [14] M. E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG proceedings 23, (2016) 1–10.
  • [15] A. Kelleci, L. C. B. da Silva, Invariant surfaces with coordinate finite-type Gauss map in simply isotropic space, J. Math. Anal. Appl., (in press).
  • [16] L. C. B. da Silva, The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces, J. of Geom., 110(2) (2019), 31.
  • [17] L. C. B. da Silva, Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces, Math. J. Okayama Univ., (in press).
  • [18] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces of type-2 in the three-dimensional simply isotropic space I13, Bull. Korean Math. Soc., 54 (2017), 953–965.
  • [19] A. Cakmak, M. K. Karacan, S. Kiziltug, Dual surfaces defined by z = f (u)+g(v) in simply isotropic 3-space I13, Commun. Korean Math. Soc., 34 (2019), 267–277.
  • [20] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces in the three-dimensional simply isotropic space I13 satisfying DIIIxi = lixi, Konuralp J. Math., 4 (2016), 275–281.
  • [21] M. K. Karacan, D. W. Yoon, B. Bukcu, Translation surfaces in the three-dimensional simply isotropic space I13, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650088.
  • [22] M. K. Karacan, D. W. Yoon, B. Bukcu, Surfaces of revolution in the three-dimensional simply isotropic space I13, Asia Pac. J. Math., 4 (2017), 1–10.
  • [23] M. E. Aydin, M. Ergut, Affine translation surfaces in the isotropic 3-space, Int. Electron. J. Geom., 10 (2017), 21–30.
  • [24] M. K. Karacan, D. W. Yoon, S. Kiziltug, Helicoidal surfaces in the three-dimensional simply isotropic space, I13, Tamkang J. Math., 48 (2017), 123–134.
  • [25] M. K. Karacan, D. W. Yoon, N. Yuksel, Classification of some special types ruled surfaces in simply isotropic 3-space, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica, 55 (2017), 87–98.
  • [26] H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Alev Kelleci Akbay 0000-0003-2528-2131

Publication Date December 15, 2020
Submission Date August 26, 2020
Acceptance Date November 5, 2020
Published in Issue Year 2020

Cite

APA Kelleci Akbay, A. (2020). Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundamental Journal of Mathematics and Applications, 3(2), 137-143. https://doi.org/10.33401/fujma.785781
AMA Kelleci Akbay A. Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundam. J. Math. Appl. December 2020;3(2):137-143. doi:10.33401/fujma.785781
Chicago Kelleci Akbay, Alev. “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 137-43. https://doi.org/10.33401/fujma.785781.
EndNote Kelleci Akbay A (December 1, 2020) Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundamental Journal of Mathematics and Applications 3 2 137–143.
IEEE A. Kelleci Akbay, “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 137–143, 2020, doi: 10.33401/fujma.785781.
ISNAD Kelleci Akbay, Alev. “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 137-143. https://doi.org/10.33401/fujma.785781.
JAMA Kelleci Akbay A. Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundam. J. Math. Appl. 2020;3:137–143.
MLA Kelleci Akbay, Alev. “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 137-43, doi:10.33401/fujma.785781.
Vancouver Kelleci Akbay A. Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundam. J. Math. Appl. 2020;3(2):137-43.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a