Research Article
BibTex RIS Cite

Disjunctive Total Domination of Some Shadow Distance Graphs

Year 2020, , 185 - 193, 15.12.2020
https://doi.org/10.33401/fujma.790046

Abstract

Let $ G $ be a graph having vertex set $ V(G) $. For $ S\subseteq V(G) $, if each vertex is adjacent to a vertex in $ S $ or has at least two vertices in $ S $ at distance two from it, then the set $ S $ is a disjunctive total dominating set of $ G $. The disjunctive total domination number is the minimum cardinality of such a set. In this work, we discuss the disjunctive total domination of shadow distance graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.

References

  • [1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
  • [2] C. Berge, Graphs and Hypergraphs. North-Holland Mathematical Library, New York, 6, 1973.
  • [3] C. L. Liu, Introduction to Combinatorial Mathematics. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968.
  • [4] T. Haynes, D. Knisley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC bioinformatics, 7 (1) (2006), 1–11.
  • [5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks, 10 (3) (1980), 211-219.
  • [6] M. A. Henning, V. Naicker, Disjunctive total domination in graphs, J. Comb. Optim., 31 (3) (2016), 1090-1110.
  • [7] M. A. Henning, V. Naicker, Bounds on the disjunctive total domination number of a tree, Discuss. Math. Graph Theory, 36 (1) (2016), 153-171.
  • [8] V. Naicker, M. A. Henning, Graphs with large disjunctive total domination number, Discrete Math. Theor. Comput. Sci., 17 (1) (2015), 255-281.
  • [9] C. F. Lin, S. L. Peng, H. D. Yang, Disjunctive total domination numbers of grid graphs, International Computer Symposium (ICS), IEEE, (2016), 80-83.
  • [10] E. Yi, Disjunctive total domination in permutation graphs, Discrete Math. Algorithms Appl., 9 (1) (2017), 1750009.
  • [11] E. Yi, The disjunctive bondage number and the disjunctive total bondage number of graphs, In Combinatorial Optimization and Applications (pp. 660-675). Springer, Cham., 2015.
  • [12] C. Çiftçi, V. Aytaç, Disjunctive total domination subdivision number of graphs, Fund. Inform., 174 (1) (2020), 15-26.
  • [13] B. Sooryanarayana, Certain combinatorial connections between groups, graphs and surfaces, Ph.D. Thesis, 1998.
  • [14] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 17 (2014), 60-62.
  • [15] U. V. Kumar, R. Murali, Edge domination in shadow distance graphs, Int. J. Math. Appl., 4(2-D) (2016), 125-130.
Year 2020, , 185 - 193, 15.12.2020
https://doi.org/10.33401/fujma.790046

Abstract

References

  • [1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
  • [2] C. Berge, Graphs and Hypergraphs. North-Holland Mathematical Library, New York, 6, 1973.
  • [3] C. L. Liu, Introduction to Combinatorial Mathematics. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968.
  • [4] T. Haynes, D. Knisley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC bioinformatics, 7 (1) (2006), 1–11.
  • [5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks, 10 (3) (1980), 211-219.
  • [6] M. A. Henning, V. Naicker, Disjunctive total domination in graphs, J. Comb. Optim., 31 (3) (2016), 1090-1110.
  • [7] M. A. Henning, V. Naicker, Bounds on the disjunctive total domination number of a tree, Discuss. Math. Graph Theory, 36 (1) (2016), 153-171.
  • [8] V. Naicker, M. A. Henning, Graphs with large disjunctive total domination number, Discrete Math. Theor. Comput. Sci., 17 (1) (2015), 255-281.
  • [9] C. F. Lin, S. L. Peng, H. D. Yang, Disjunctive total domination numbers of grid graphs, International Computer Symposium (ICS), IEEE, (2016), 80-83.
  • [10] E. Yi, Disjunctive total domination in permutation graphs, Discrete Math. Algorithms Appl., 9 (1) (2017), 1750009.
  • [11] E. Yi, The disjunctive bondage number and the disjunctive total bondage number of graphs, In Combinatorial Optimization and Applications (pp. 660-675). Springer, Cham., 2015.
  • [12] C. Çiftçi, V. Aytaç, Disjunctive total domination subdivision number of graphs, Fund. Inform., 174 (1) (2020), 15-26.
  • [13] B. Sooryanarayana, Certain combinatorial connections between groups, graphs and surfaces, Ph.D. Thesis, 1998.
  • [14] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 17 (2014), 60-62.
  • [15] U. V. Kumar, R. Murali, Edge domination in shadow distance graphs, Int. J. Math. Appl., 4(2-D) (2016), 125-130.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Canan Çiftçi 0000-0001-5397-0367

Publication Date December 15, 2020
Submission Date September 3, 2020
Acceptance Date December 9, 2020
Published in Issue Year 2020

Cite

APA Çiftçi, C. (2020). Disjunctive Total Domination of Some Shadow Distance Graphs. Fundamental Journal of Mathematics and Applications, 3(2), 185-193. https://doi.org/10.33401/fujma.790046
AMA Çiftçi C. Disjunctive Total Domination of Some Shadow Distance Graphs. Fundam. J. Math. Appl. December 2020;3(2):185-193. doi:10.33401/fujma.790046
Chicago Çiftçi, Canan. “Disjunctive Total Domination of Some Shadow Distance Graphs”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 185-93. https://doi.org/10.33401/fujma.790046.
EndNote Çiftçi C (December 1, 2020) Disjunctive Total Domination of Some Shadow Distance Graphs. Fundamental Journal of Mathematics and Applications 3 2 185–193.
IEEE C. Çiftçi, “Disjunctive Total Domination of Some Shadow Distance Graphs”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 185–193, 2020, doi: 10.33401/fujma.790046.
ISNAD Çiftçi, Canan. “Disjunctive Total Domination of Some Shadow Distance Graphs”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 185-193. https://doi.org/10.33401/fujma.790046.
JAMA Çiftçi C. Disjunctive Total Domination of Some Shadow Distance Graphs. Fundam. J. Math. Appl. 2020;3:185–193.
MLA Çiftçi, Canan. “Disjunctive Total Domination of Some Shadow Distance Graphs”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 185-93, doi:10.33401/fujma.790046.
Vancouver Çiftçi C. Disjunctive Total Domination of Some Shadow Distance Graphs. Fundam. J. Math. Appl. 2020;3(2):185-93.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a