Research Article
BibTex RIS Cite
Year 2021, , 124 - 133, 01.06.2021
https://doi.org/10.33401/fujma.882309

Abstract

References

  • [1] M. Ilkhan, Matrix domain of a regular matrix derived by Euler Totient function in the spaces c0 and c, Mediterr. J. Math., 17(1) (2020), 1-21.
  • [2] E. E. Kara, M. Bas¸arır, On compact operators and some Euler B(m)-difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
  • [3] T.M. FLett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc., 3(1) (1957), 113-141.
  • [4] F. Gökçe, M.A. Sarıgöl, Some matrix and compact operators of the absolute Fibonacci series spaces, Kragujevac J. Math., 44(2) (2020), 273–286.
  • [5] F. Gökçe, M.A. Sarıgöl, Series spaces derived from absolute Fibonacci summability and matrix transformations, Boll. Unione Mat. Ital., 13(1) (2020), 29-38.
  • [6] F. Gökçe, M.A. Sarıgöl, On absolute Euler spaces and related matrix operators, Proc. Nat. Acad. Sci. India Sect. A, 90(5) (2020), 769-775.
  • [7] F. Gökçe, M.A. Sarıgöl, Generalization of the absolute Ces`aro space and some matrix transformations, Numer. Funct. Anal. Optim., 40(9) (2019), 1039-1052.
  • [8] M.A. Sarıgöl, Matrix transformations on fields of absolute weighted mean summability, Studia Sci. Math. Hungar., 48(3) (2011), 331-341.
  • [9] M.A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods jN; pnjk and jC;1jk, Indian J. Pure Appl. Math., 22(6) (1991), 483-489.
  • [10] R. N. Mohapatra, M.A. Sarıgöl, On matrix operators on the series space j¯Nq p jk, Ukrainian Math. J., 69(11) (2018), 1772-1783.
  • [11] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comput., 216(11) (2010), 3386-3390.
  • [12] W.T. Sulaiman, On summability factors of infinite series, Proc. Amer. Math. Soc., 115(2) (1992), 313- 317.
  • [13] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad.(Beogr), 9(17) (2000), 143-234.
  • [14] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen, Eine Ergebnis¨ubersicht. Math. Z. 154(1) (1977), 1-16.
  • [15] I.J.Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, 1970.
  • [16] M.A. Sarıgöl, Extension of Mazhar’s theorem on summability factors, Kuwait J. Sci., 42(3) (2015), 28-35.
  • [17] I. Djolovic, E. Malkowsky, Matrix transformations and compact operators on some new mth-order difference sequences, Appl. Math. Comput., 198(2) (2008), 700-714.
  • [18] L.S. Goldenstein, I.T. Gohberg, A.S. Markus, Investigations of some properties of bounded linear operators with their q-norms, Uchen. Zap. Kishinev. Gos. Univ., 29 (1957), 29-36.
  • [19] M. Mursaleen, A.K. Noman, Compactness of matrix operators on some new difference sequence spaces, Linear Algebra Appl., 436(1) (2012), 41-52.
  • [20] M. Mursaleen, A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
  • [21] E. Malkowsky, V. Rakocevic, Measure of noncompactness of linear operators between spaces of sequences that are (¯N ;q) summable or bounded, Czechoslovak Math. J., 51(3) (2001), 505-522.
  • [22] G. C. Hazar Güleç, Applications of measure of noncompactness in the series spaces of generalized absolute Ces`aro means, KFBD, 10(1),(2020) 60-73.
  • [23] G. C. Hazar Güleç, Compact matrix operators on absolute Ces`aro spaces, Numer. Funct. Anal. Optim., 41(1) (2020), 1-15.
  • [24] E. Malkowsky, Compact matrix operators between some BK􀀀 spaces, in: M. Mursaleen (Ed.), Modern Methods of Analysis and Its Applications, Anamaya Publ., New Delhi, (2010), 86-120.
  • [25] M.A. Sarıgöl, Norms and compactness of operators on absolute weighted mean summable series, Kuwait J. Sci., 43(4) (2016), 68-74.
  • [26] V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12(2) (1998), 87-120.
  • [27] A.M. Jarrah, E. Malkowsky, Ordinary absolute and strong summability and matrix transformations, Filomat 17 (2003), 59-78.
  • [28] E. Malkowsky, V. Rakocevic, On matrix domains of triangles, Appl. Math. Comput., 189(2) (2007), 1146-1163.

Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$

Year 2021, , 124 - 133, 01.06.2021
https://doi.org/10.33401/fujma.882309

Abstract

In this paper, determining the operator norm, we give certain characterizations of matrix transformations from the space $ \left\vert \overline N_p^{\phi }\right\vert _{k}$, the space of all series summable by the absolute weighted mean summability method, to one of the classical sequence spaces $c_{0},c,l_{\infty }.$ Also, we obtain the necessary and sufficient conditions for each matrix in these classes to be compact and establish a number of estimates or identities for the Hausdorff measures of noncompactness of the matrix operators in these classes.

References

  • [1] M. Ilkhan, Matrix domain of a regular matrix derived by Euler Totient function in the spaces c0 and c, Mediterr. J. Math., 17(1) (2020), 1-21.
  • [2] E. E. Kara, M. Bas¸arır, On compact operators and some Euler B(m)-difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
  • [3] T.M. FLett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc., 3(1) (1957), 113-141.
  • [4] F. Gökçe, M.A. Sarıgöl, Some matrix and compact operators of the absolute Fibonacci series spaces, Kragujevac J. Math., 44(2) (2020), 273–286.
  • [5] F. Gökçe, M.A. Sarıgöl, Series spaces derived from absolute Fibonacci summability and matrix transformations, Boll. Unione Mat. Ital., 13(1) (2020), 29-38.
  • [6] F. Gökçe, M.A. Sarıgöl, On absolute Euler spaces and related matrix operators, Proc. Nat. Acad. Sci. India Sect. A, 90(5) (2020), 769-775.
  • [7] F. Gökçe, M.A. Sarıgöl, Generalization of the absolute Ces`aro space and some matrix transformations, Numer. Funct. Anal. Optim., 40(9) (2019), 1039-1052.
  • [8] M.A. Sarıgöl, Matrix transformations on fields of absolute weighted mean summability, Studia Sci. Math. Hungar., 48(3) (2011), 331-341.
  • [9] M.A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods jN; pnjk and jC;1jk, Indian J. Pure Appl. Math., 22(6) (1991), 483-489.
  • [10] R. N. Mohapatra, M.A. Sarıgöl, On matrix operators on the series space j¯Nq p jk, Ukrainian Math. J., 69(11) (2018), 1772-1783.
  • [11] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comput., 216(11) (2010), 3386-3390.
  • [12] W.T. Sulaiman, On summability factors of infinite series, Proc. Amer. Math. Soc., 115(2) (1992), 313- 317.
  • [13] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad.(Beogr), 9(17) (2000), 143-234.
  • [14] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen, Eine Ergebnis¨ubersicht. Math. Z. 154(1) (1977), 1-16.
  • [15] I.J.Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, 1970.
  • [16] M.A. Sarıgöl, Extension of Mazhar’s theorem on summability factors, Kuwait J. Sci., 42(3) (2015), 28-35.
  • [17] I. Djolovic, E. Malkowsky, Matrix transformations and compact operators on some new mth-order difference sequences, Appl. Math. Comput., 198(2) (2008), 700-714.
  • [18] L.S. Goldenstein, I.T. Gohberg, A.S. Markus, Investigations of some properties of bounded linear operators with their q-norms, Uchen. Zap. Kishinev. Gos. Univ., 29 (1957), 29-36.
  • [19] M. Mursaleen, A.K. Noman, Compactness of matrix operators on some new difference sequence spaces, Linear Algebra Appl., 436(1) (2012), 41-52.
  • [20] M. Mursaleen, A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
  • [21] E. Malkowsky, V. Rakocevic, Measure of noncompactness of linear operators between spaces of sequences that are (¯N ;q) summable or bounded, Czechoslovak Math. J., 51(3) (2001), 505-522.
  • [22] G. C. Hazar Güleç, Applications of measure of noncompactness in the series spaces of generalized absolute Ces`aro means, KFBD, 10(1),(2020) 60-73.
  • [23] G. C. Hazar Güleç, Compact matrix operators on absolute Ces`aro spaces, Numer. Funct. Anal. Optim., 41(1) (2020), 1-15.
  • [24] E. Malkowsky, Compact matrix operators between some BK􀀀 spaces, in: M. Mursaleen (Ed.), Modern Methods of Analysis and Its Applications, Anamaya Publ., New Delhi, (2010), 86-120.
  • [25] M.A. Sarıgöl, Norms and compactness of operators on absolute weighted mean summable series, Kuwait J. Sci., 43(4) (2016), 68-74.
  • [26] V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12(2) (1998), 87-120.
  • [27] A.M. Jarrah, E. Malkowsky, Ordinary absolute and strong summability and matrix transformations, Filomat 17 (2003), 59-78.
  • [28] E. Malkowsky, V. Rakocevic, On matrix domains of triangles, Appl. Math. Comput., 189(2) (2007), 1146-1163.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fadime Gökçe 0000-0003-1819-3317

Publication Date June 1, 2021
Submission Date February 18, 2021
Acceptance Date June 4, 2021
Published in Issue Year 2021

Cite

APA Gökçe, F. (2021). Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$. Fundamental Journal of Mathematics and Applications, 4(2), 124-133. https://doi.org/10.33401/fujma.882309
AMA Gökçe F. Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$. Fundam. J. Math. Appl. June 2021;4(2):124-133. doi:10.33401/fujma.882309
Chicago Gökçe, Fadime. “Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$”. Fundamental Journal of Mathematics and Applications 4, no. 2 (June 2021): 124-33. https://doi.org/10.33401/fujma.882309.
EndNote Gökçe F (June 1, 2021) Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$. Fundamental Journal of Mathematics and Applications 4 2 124–133.
IEEE F. Gökçe, “Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$”, Fundam. J. Math. Appl., vol. 4, no. 2, pp. 124–133, 2021, doi: 10.33401/fujma.882309.
ISNAD Gökçe, Fadime. “Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$”. Fundamental Journal of Mathematics and Applications 4/2 (June 2021), 124-133. https://doi.org/10.33401/fujma.882309.
JAMA Gökçe F. Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$. Fundam. J. Math. Appl. 2021;4:124–133.
MLA Gökçe, Fadime. “Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 2, 2021, pp. 124-33, doi:10.33401/fujma.882309.
Vancouver Gökçe F. Compact and Matrix Operators on the Space $\left\vert \overline N_p^{\phi }\right\vert _{k}$. Fundam. J. Math. Appl. 2021;4(2):124-33.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a