[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, 30(1989), 26-37.
[2] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
[4] R. George, B. Fisher, Some generalized results of fixed points in cone b-metric spaces, Math. Moravic., 17(2013), 39- 50.
[5] F. Khojasteh, E. Karapinar, S. Randenvic, q-metric space: a generalization, Math. Probl. Eng., Art. ID:504609, (2013), 7pp.
[6] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29(6)(2015), 1189- 1194.
[7] A.Chanda, B. Damjanovi ´ c, L. K. Dey, Fixed point results on q-metric spaces via simulation functions, Filomat, 31(11)(2017), 3365-3375.
[8] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b- simulation functions, Iranian J. Math. Sci. Inform., 11(1)(2016), 123- 136.
Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions
We introduce the concept of $b$-$\theta$-metric space as a generalization of $\theta$-metric space and investigate some of its properties. Then, we establish a fixed point theorem in $b$-$\theta$-metric spaces via $b$-simulation functions. Thus, we deduce Banach type fixed point in such spaces. Also, we discuss some fixed point results in relation to existing ones.
[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, 30(1989), 26-37.
[2] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
[4] R. George, B. Fisher, Some generalized results of fixed points in cone b-metric spaces, Math. Moravic., 17(2013), 39- 50.
[5] F. Khojasteh, E. Karapinar, S. Randenvic, q-metric space: a generalization, Math. Probl. Eng., Art. ID:504609, (2013), 7pp.
[6] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29(6)(2015), 1189- 1194.
[7] A.Chanda, B. Damjanovi ´ c, L. K. Dey, Fixed point results on q-metric spaces via simulation functions, Filomat, 31(11)(2017), 3365-3375.
[8] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b- simulation functions, Iranian J. Math. Sci. Inform., 11(1)(2016), 123- 136.
Dalan Yıldırım, E., Çaksu Güler, A., & Özbakır, O. B. (2021). Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundamental Journal of Mathematics and Applications, 4(3), 159-164. https://doi.org/10.33401/fujma.890533
AMA
Dalan Yıldırım E, Çaksu Güler A, Özbakır OB. Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundam. J. Math. Appl. September 2021;4(3):159-164. doi:10.33401/fujma.890533
Chicago
Dalan Yıldırım, Esra, Ayşegül Çaksu Güler, and Oya Bedre Özbakır. “Some Fixed Point Theorems on $b$-$\theta$-Metric Spaces via $b$-Simulation Functions”. Fundamental Journal of Mathematics and Applications 4, no. 3 (September 2021): 159-64. https://doi.org/10.33401/fujma.890533.
EndNote
Dalan Yıldırım E, Çaksu Güler A, Özbakır OB (September 1, 2021) Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundamental Journal of Mathematics and Applications 4 3 159–164.
IEEE
E. Dalan Yıldırım, A. Çaksu Güler, and O. B. Özbakır, “Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions”, Fundam. J. Math. Appl., vol. 4, no. 3, pp. 159–164, 2021, doi: 10.33401/fujma.890533.
ISNAD
Dalan Yıldırım, Esra et al. “Some Fixed Point Theorems on $b$-$\theta$-Metric Spaces via $b$-Simulation Functions”. Fundamental Journal of Mathematics and Applications 4/3 (September 2021), 159-164. https://doi.org/10.33401/fujma.890533.
JAMA
Dalan Yıldırım E, Çaksu Güler A, Özbakır OB. Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundam. J. Math. Appl. 2021;4:159–164.
MLA
Dalan Yıldırım, Esra et al. “Some Fixed Point Theorems on $b$-$\theta$-Metric Spaces via $b$-Simulation Functions”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 3, 2021, pp. 159-64, doi:10.33401/fujma.890533.
Vancouver
Dalan Yıldırım E, Çaksu Güler A, Özbakır OB. Some Fixed Point Theorems on $b$-$\theta$-metric spaces via $b$-simulation Functions. Fundam. J. Math. Appl. 2021;4(3):159-64.