Research Article
BibTex RIS Cite
Year 2021, , 221 - 231, 01.12.2021
https://doi.org/10.33401/fujma.916263

Abstract

References

  • [1] O. Ore, Theory of graphs, American Mathematical Society, Providence, RI, 30 (1962), 206-212.
  • [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
  • [3] E. Kılıc¸, B. Aylı, Double edge-vertex domination number of graphs, Adv. Math. Mod. Appl., 5(1), (2020), 19-37.
  • [4] E. Kılıc¸, B. Aylı, Double edge-vertex domination under some graph operations, J. Mod. Tech. Eng., 5(2), (2020), 175-180.
  • [5] V.R. Kulli, The neighborhood graph of a graph, International Journal of Fuzzy Mathematical Archive, 8(2), (2015), 93-99.
  • [6] S. Mitchell, S.T. Hedetniemi, Edge domination in trees, Congr. Numer., 19, (1977), 489-509.
  • [7] J.W. Peters, Theoretical and algorithmic results on domination and connectivity, Ph.D.Thesis, Clemson University, 1986.
  • [8] J.R. Lewis, Edge and edge-vertex domination in graphs, Ph.D. Thesis, Clemson University, 2007.
  • [9] B. Krishnakumari, M. Chellali, Y.B. Venkatakrishnan, Double vertex-edge domination, Disc. Math., Algorithms and Applications, 9(4), (2017), Article ID 1750045, doi:10.1142/S1793830917500458.
  • [10] E. Sampathkumar, H.B. Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., 25(13), (1980), 13-16.
  • [11] I. Hamada, T. Yoshimura, Traversability and connectivity of the middle graph of a graph, Disc. Math., 14(3), (1976), 247-256.

Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle

Year 2021, , 221 - 231, 01.12.2021
https://doi.org/10.33401/fujma.916263

Abstract

An edge $e=uv$ of graph $G=(V,E)$ is said to be edge-vertex dominate vertices $u$ and $v$, as well as all vertices adjacent to $u$ and $v$. A set $S \subseteq E $ is a double edge-vertex dominating set if every vertex of $V$ is edge-vertex dominated by at least two edges of $S$. The minimum cardinality of a double edge-vertex dominating set of $G$ is the double edge-vertex domination number and is denoted by $\gamma_{dev}(G)$. In this paper, we present results for middle graphs of path and cycle and some splitting graphs of path and cycle on double edge-vertex domination numbers.

References

  • [1] O. Ore, Theory of graphs, American Mathematical Society, Providence, RI, 30 (1962), 206-212.
  • [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
  • [3] E. Kılıc¸, B. Aylı, Double edge-vertex domination number of graphs, Adv. Math. Mod. Appl., 5(1), (2020), 19-37.
  • [4] E. Kılıc¸, B. Aylı, Double edge-vertex domination under some graph operations, J. Mod. Tech. Eng., 5(2), (2020), 175-180.
  • [5] V.R. Kulli, The neighborhood graph of a graph, International Journal of Fuzzy Mathematical Archive, 8(2), (2015), 93-99.
  • [6] S. Mitchell, S.T. Hedetniemi, Edge domination in trees, Congr. Numer., 19, (1977), 489-509.
  • [7] J.W. Peters, Theoretical and algorithmic results on domination and connectivity, Ph.D.Thesis, Clemson University, 1986.
  • [8] J.R. Lewis, Edge and edge-vertex domination in graphs, Ph.D. Thesis, Clemson University, 2007.
  • [9] B. Krishnakumari, M. Chellali, Y.B. Venkatakrishnan, Double vertex-edge domination, Disc. Math., Algorithms and Applications, 9(4), (2017), Article ID 1750045, doi:10.1142/S1793830917500458.
  • [10] E. Sampathkumar, H.B. Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., 25(13), (1980), 13-16.
  • [11] I. Hamada, T. Yoshimura, Traversability and connectivity of the middle graph of a graph, Disc. Math., 14(3), (1976), 247-256.
There are 11 citations in total.

Details

Primary Language English
Subjects Computer Software, Mathematical Sciences
Journal Section Articles
Authors

Banu Aylı 0000-0003-3117-2553

Elgin Kılıc 0000-0002-1074-5589

Publication Date December 1, 2021
Submission Date April 15, 2021
Acceptance Date October 1, 2021
Published in Issue Year 2021

Cite

APA Aylı, B., & Kılıc, E. (2021). Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle. Fundamental Journal of Mathematics and Applications, 4(4), 221-231. https://doi.org/10.33401/fujma.916263
AMA Aylı B, Kılıc E. Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle. Fundam. J. Math. Appl. December 2021;4(4):221-231. doi:10.33401/fujma.916263
Chicago Aylı, Banu, and Elgin Kılıc. “Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle”. Fundamental Journal of Mathematics and Applications 4, no. 4 (December 2021): 221-31. https://doi.org/10.33401/fujma.916263.
EndNote Aylı B, Kılıc E (December 1, 2021) Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle. Fundamental Journal of Mathematics and Applications 4 4 221–231.
IEEE B. Aylı and E. Kılıc, “Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle”, Fundam. J. Math. Appl., vol. 4, no. 4, pp. 221–231, 2021, doi: 10.33401/fujma.916263.
ISNAD Aylı, Banu - Kılıc, Elgin. “Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle”. Fundamental Journal of Mathematics and Applications 4/4 (December 2021), 221-231. https://doi.org/10.33401/fujma.916263.
JAMA Aylı B, Kılıc E. Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle. Fundam. J. Math. Appl. 2021;4:221–231.
MLA Aylı, Banu and Elgin Kılıc. “Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 4, 2021, pp. 221-3, doi:10.33401/fujma.916263.
Vancouver Aylı B, Kılıc E. Double Edge-Vertex Domination on Middle and Splitting Graphs of Path and Cycle. Fundam. J. Math. Appl. 2021;4(4):221-3.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a