[1] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
[2] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
[3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
[4] G. Calvaruso, A. Perrone, Five-dimensional paracontact Lie algebras, Differ. Geom. Appl., 45 (2016), 115-129.
[5] N. Özdemir, Ş. Aktay, M. Solgun, Almost paracontact structures obtained from G2(2) structures, Turk. J. Math., 42 (2018), 3025-3033.
[6] Ş Aktay, On the relation between G_2 structures and almost paracontact structures, J. Geom. Symmetry Phys., 56 (2020), 31-43.
[7] N. Özdemir, M. Solgun, Ş. Aktay, Almost para-contact metric structures on 5-dimensional nilpotent Lie algebras, Fundamental J. Math. App., 3 (2020), 175-184.
[8] I. K¨upeli Erken, On normal almost paracontact metric manifolds of dimension 3, Facta Univ. Ser. Math. Inform., 5, (2015), 777-788.
[9] S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geo.,109 (2018), 18.
[10] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkh¨auser, Switzerland, 2002, ISBN 978-0817642617.
[11] S. Tanno, The topology of contact Riemannian manifolds, Ilinois J. Math., 12 (1968), 700-717.
[12] S. Tanno, Harmonic forms and Betti numbers of certain contact manifolds, J. Math. Soc. Japan, 19 (1967), 308-316.
Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds
In this paper, we investigate the effect of $\mathcal{D}$-homothetic deformation on almost para-contact metric manifolds. The main results of the paper are about some classes of almost paracontact metric manifolds in which the characteristic vector field is parallel. It is shown that certain classes are invariant under the $\mathcal{D}$-homothetic deformation.
[1] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
[2] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
[3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
[4] G. Calvaruso, A. Perrone, Five-dimensional paracontact Lie algebras, Differ. Geom. Appl., 45 (2016), 115-129.
[5] N. Özdemir, Ş. Aktay, M. Solgun, Almost paracontact structures obtained from G2(2) structures, Turk. J. Math., 42 (2018), 3025-3033.
[6] Ş Aktay, On the relation between G_2 structures and almost paracontact structures, J. Geom. Symmetry Phys., 56 (2020), 31-43.
[7] N. Özdemir, M. Solgun, Ş. Aktay, Almost para-contact metric structures on 5-dimensional nilpotent Lie algebras, Fundamental J. Math. App., 3 (2020), 175-184.
[8] I. K¨upeli Erken, On normal almost paracontact metric manifolds of dimension 3, Facta Univ. Ser. Math. Inform., 5, (2015), 777-788.
[9] S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geo.,109 (2018), 18.
[10] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkh¨auser, Switzerland, 2002, ISBN 978-0817642617.
[11] S. Tanno, The topology of contact Riemannian manifolds, Ilinois J. Math., 12 (1968), 700-717.
[12] S. Tanno, Harmonic forms and Betti numbers of certain contact manifolds, J. Math. Soc. Japan, 19 (1967), 308-316.
Solgun, M. (2021). Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundamental Journal of Mathematics and Applications, 4(4), 264-270. https://doi.org/10.33401/fujma.975200
AMA
Solgun M. Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundam. J. Math. Appl. December 2021;4(4):264-270. doi:10.33401/fujma.975200
Chicago
Solgun, Mehmet. “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”. Fundamental Journal of Mathematics and Applications 4, no. 4 (December 2021): 264-70. https://doi.org/10.33401/fujma.975200.
EndNote
Solgun M (December 1, 2021) Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundamental Journal of Mathematics and Applications 4 4 264–270.
IEEE
M. Solgun, “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”, Fundam. J. Math. Appl., vol. 4, no. 4, pp. 264–270, 2021, doi: 10.33401/fujma.975200.
ISNAD
Solgun, Mehmet. “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”. Fundamental Journal of Mathematics and Applications 4/4 (December 2021), 264-270. https://doi.org/10.33401/fujma.975200.
JAMA
Solgun M. Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundam. J. Math. Appl. 2021;4:264–270.
MLA
Solgun, Mehmet. “Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 4, 2021, pp. 264-70, doi:10.33401/fujma.975200.
Vancouver
Solgun M. Some Results on $\mathcal{D}$-Homothetic Deformation On Almost Paracontact Metric Manifolds. Fundam. J. Math. Appl. 2021;4(4):264-70.