Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 2, 220 - 231, 25.12.2018
https://doi.org/10.33401/fujma.402022

Abstract

References

  • [1] C. Y. Chow, M. S. Uberoi, Secondary flows due to axisymmetric converging-diverging electric current, Comput. Fluids, 6(2) (1978), 115-123.
  • [2] M. S. Uberoi, Magnetohyerodynamics at small magnetic Reynolds numbers, Phys. Fluids, 5(4) (1962), 401-406.
  • [3] J. P. Narain, M. S. Uberoi, Magnetohydroynamics of conical flows, Phys. Fluids, 14(12) (1971), 2687-2692.
  • [4] J. A. Shercliff, The flow of conducting fluids in circular pipes under transverse magnetic fields J. Fluid Mech., 1(6) (1956), 644-666.
  • [5] I. Di Piazza, A. Buhler, A general computational approach for magnetohydrodynmic flows using CFX code: buoyant flow though through a vertical square channel, Fusion Technol., 38(2) (2000), 180-189.
  • [6] M. S. Uberoi, C. Y. Chow, Large scale motions in electrical discharges, Phys. Fluid, 20(11) (1977), 1815-1820.
  • [7] J. M.Ritter, Two phase fluid flows in pipes and channels. MSc. Thesis, Tennessee Technological Society, 1976.
  • [8] A. J. Chamkha, Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes, Int. J. Heat Fluid Flow, 21(6) (2000), 740-746.
  • [9] A. J. Chamkha, Hydromagnetic two-phase flow in a channel, Int. J. Engnr. Sci., 33(3) (1995), 437-446.
  • [10] A. J. Chamkha, Time dependent two-phase channel flow due to an oscillating pressure gradient, Fluid Part. Sep. J., 8 (1995b), 203.
  • [11] O. O. Onyejekwe, Magnetohydrodynamics flow in a tube with centrally placed electrodes, Int. Comm. Heat Mass Trans., 35(10) (2008), 1241-1245.
  • [12] A. Pantokratoras, Some new parallel flows in weakly conducting fluids with an exponenetially decaying Lorentz force, Math. Probl. in Engnr., 2 (2007), Article ID 87814, 14 pages.
  • [13] H. S. Kabbani, J. M. Martin, S. W. Joo, S. Qian, Analytical prediction of flow in magnetohydrodynamic fluidic devices, 130(9) (2008), 912041-912046.
  • [14] V. M.Soundalgekar, Finite difference analysis of transient free convection with mass transfer on an isothermal vertical flat plate, Int. J. Engnr. Sci., 19(6) (1981), 757-770.
  • [15] C. Y. Chow, An Introduction to Computational Fluid Mechanics, Publishers: John Wiley and Sons, 1979, 396 pages.
  • [16] A. Altinas, I. Ozkol Magnetohydrodynamic flow of liquid-metal in circular pipes for externally heated non heated cases, J. Appl. Fluid Mech., 8(3) (2015), 507-514.
  • [17] Z. Jing, M. J. Ni, Z. H. Wang, Numerical study of MHD natural convection of liquid metal with wall effects, Num. Heat Trans., 64(8) (2013), 676-693.
  • [18] J. A. Rao, R. S. Raju, S. Sivsiah, Finite element solution of heat and mass transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction velocity, J. Appl. Fluid Mech., 5(3) (2012), 1-10.

Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration

Year 2018, Volume: 1 Issue: 2, 220 - 231, 25.12.2018
https://doi.org/10.33401/fujma.402022

Abstract

The effects of variations in flow field due to the presence of electromagnetic rotational forces on a transient incompressible and electrically conducting fluid flow are sought. These variations result from interactions between the electric currents with a nonuniform magnetic field. The governing equations are coupled and nonlinear and are discretized using the finite difference technique. Numerical results illustrating the development of secondary flows by the rotational electromagnetic force field are displayed, as well as the effects on the streamline axial velocity profiles by the magnetic pressure number and the flow Reynolds numbers.

References

  • [1] C. Y. Chow, M. S. Uberoi, Secondary flows due to axisymmetric converging-diverging electric current, Comput. Fluids, 6(2) (1978), 115-123.
  • [2] M. S. Uberoi, Magnetohyerodynamics at small magnetic Reynolds numbers, Phys. Fluids, 5(4) (1962), 401-406.
  • [3] J. P. Narain, M. S. Uberoi, Magnetohydroynamics of conical flows, Phys. Fluids, 14(12) (1971), 2687-2692.
  • [4] J. A. Shercliff, The flow of conducting fluids in circular pipes under transverse magnetic fields J. Fluid Mech., 1(6) (1956), 644-666.
  • [5] I. Di Piazza, A. Buhler, A general computational approach for magnetohydrodynmic flows using CFX code: buoyant flow though through a vertical square channel, Fusion Technol., 38(2) (2000), 180-189.
  • [6] M. S. Uberoi, C. Y. Chow, Large scale motions in electrical discharges, Phys. Fluid, 20(11) (1977), 1815-1820.
  • [7] J. M.Ritter, Two phase fluid flows in pipes and channels. MSc. Thesis, Tennessee Technological Society, 1976.
  • [8] A. J. Chamkha, Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes, Int. J. Heat Fluid Flow, 21(6) (2000), 740-746.
  • [9] A. J. Chamkha, Hydromagnetic two-phase flow in a channel, Int. J. Engnr. Sci., 33(3) (1995), 437-446.
  • [10] A. J. Chamkha, Time dependent two-phase channel flow due to an oscillating pressure gradient, Fluid Part. Sep. J., 8 (1995b), 203.
  • [11] O. O. Onyejekwe, Magnetohydrodynamics flow in a tube with centrally placed electrodes, Int. Comm. Heat Mass Trans., 35(10) (2008), 1241-1245.
  • [12] A. Pantokratoras, Some new parallel flows in weakly conducting fluids with an exponenetially decaying Lorentz force, Math. Probl. in Engnr., 2 (2007), Article ID 87814, 14 pages.
  • [13] H. S. Kabbani, J. M. Martin, S. W. Joo, S. Qian, Analytical prediction of flow in magnetohydrodynamic fluidic devices, 130(9) (2008), 912041-912046.
  • [14] V. M.Soundalgekar, Finite difference analysis of transient free convection with mass transfer on an isothermal vertical flat plate, Int. J. Engnr. Sci., 19(6) (1981), 757-770.
  • [15] C. Y. Chow, An Introduction to Computational Fluid Mechanics, Publishers: John Wiley and Sons, 1979, 396 pages.
  • [16] A. Altinas, I. Ozkol Magnetohydrodynamic flow of liquid-metal in circular pipes for externally heated non heated cases, J. Appl. Fluid Mech., 8(3) (2015), 507-514.
  • [17] Z. Jing, M. J. Ni, Z. H. Wang, Numerical study of MHD natural convection of liquid metal with wall effects, Num. Heat Trans., 64(8) (2013), 676-693.
  • [18] J. A. Rao, R. S. Raju, S. Sivsiah, Finite element solution of heat and mass transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction velocity, J. Appl. Fluid Mech., 5(3) (2012), 1-10.
There are 18 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Okey Oseloka Onyejekwe

Publication Date December 25, 2018
Submission Date March 5, 2018
Acceptance Date July 31, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Onyejekwe, O. O. (2018). Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration. Fundamental Journal of Mathematics and Applications, 1(2), 220-231. https://doi.org/10.33401/fujma.402022
AMA Onyejekwe OO. Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration. Fundam. J. Math. Appl. December 2018;1(2):220-231. doi:10.33401/fujma.402022
Chicago Onyejekwe, Okey Oseloka. “Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration”. Fundamental Journal of Mathematics and Applications 1, no. 2 (December 2018): 220-31. https://doi.org/10.33401/fujma.402022.
EndNote Onyejekwe OO (December 1, 2018) Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration. Fundamental Journal of Mathematics and Applications 1 2 220–231.
IEEE O. O. Onyejekwe, “Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration”, Fundam. J. Math. Appl., vol. 1, no. 2, pp. 220–231, 2018, doi: 10.33401/fujma.402022.
ISNAD Onyejekwe, Okey Oseloka. “Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration”. Fundamental Journal of Mathematics and Applications 1/2 (December 2018), 220-231. https://doi.org/10.33401/fujma.402022.
JAMA Onyejekwe OO. Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration. Fundam. J. Math. Appl. 2018;1:220–231.
MLA Onyejekwe, Okey Oseloka. “Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration”. Fundamental Journal of Mathematics and Applications, vol. 1, no. 2, 2018, pp. 220-31, doi:10.33401/fujma.402022.
Vancouver Onyejekwe OO. Fluid Flow Characteristics for a Diverging-Converging Magnetohydrodynamic Electric Current Configuration. Fundam. J. Math. Appl. 2018;1(2):220-31.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a