Research Article
BibTex RIS Cite

Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem

Year 2018, Volume: 1 Issue: 2, 205 - 211, 25.12.2018
https://doi.org/10.33401/fujma.418934

Abstract

This paper is concerned with the following fourth-order three-point boundary value problem BVP \[ u^{\left(4\right)}\left(t\right)=f\left(t,u\left(t\right)\right),\quad t\in\left[0,1\right], \] \[ u'\left(0\right)=u''\left(0\right)=u\left(1\right)=0,\;u'''\left(\eta\right)+\alpha u\left(0\right)=0, \] where $f\in C\left(\left[0,1\right]\times\left[0,+\infty\right),\left[0,+\infty\right)\right)$ , $\alpha\in\left[0,6\right)$ and $\eta\in\left[\frac{2}{3},1\right)$. Although corresponding Green\textquoteright s function is sign-changing, we still obtain the existence of monotone positive solution under some suitable conditions on $f$ by applying iterative method. An example is also given to illustrate the main results.

References

  • [1] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.
  • [2] A. Cabada, S. Tersian, Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations, Bound. Value Probl., 105 (2014).
  • [3] D. R. Anderson, R. I. Avery, A fourth-order four-point right focal boundary value problem, Rocky Mountain J. Math., 36 (2006), 367-380.
  • [4] E. Alves, T. F. Ma, M. L. Pelicer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions, Nonlinear Anal., 71 (2009), 3834-3841.
  • [5] J. R. Graef, B. Yang, Positive solutions for fourth-order focal boundary value problem, Rocky mountain journal of mathematics, 44(3) (2014), 937-951.
  • [6] N. Bouteraa, S. Benaicha, H. Djourdem, M. E. Benattia, Positive solutions of nonlinear fourth-order two-point boundary value problem with a parameter, Romanian J. Math. Comput. Sci., 8(1) (2018), 17-30.
  • [7] N. Bouteraa, S. Benaicha, Triple positive solutions of higher-order nonlinear boundary value problems, J. Comput. Sci. Comput. Math., 7(2) (2017).
  • [8] R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis, Differ. Integral Equ., 2(1) (1989), 91–110.
  • [9] S. Lia, X. Zhanga, Existence and uniqueness of monotone positive solutions for an elastic beam equation with nonlinear boundary conditions, Comput. Math. Appl., 63 (2012), 1355–1360.
  • [10] W. Wang, Y. Zheng, H. Yang, J. Wang, Positive solutions for elastic beam equations with nonlinear boundary conditions and a parameter, Bound. Value Probl., 80 (2014), 1-17.
  • [11] Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, Journal of Mathematical Analysis and Applications, 281(2) (2003), 477–484.
  • [12] Z. Bai, The upper and lower solution method for some fourth-order boundary value problem, Nonlinear Anal., 67 (2007), 1704- 1709.
  • [13] Z. Bekri, S. Benaicha, Existence of positive of solution for a nonlinear three-point boundary value problem, Sib. ‘Elektron. Mat. Izv., 14 (2017), 1120–1134.
  • [14] A. P. Palamides, G. Smyrlis, Positive solutions to a singular third-order three-point BVP with an indefinitely signed Green’s function, Nonlinear Anal., 68 (2008), 2104-2118.
  • [15] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, 5, Academic Press, New York, NY, USA, 1988.
  • [16] M. A. Krasnoselskii, Positive Solutions of Opearator Equations, Noordhoff, Groningen, The Netherlands, 1964.
  • [17] Y. Zhang, J. P. Sun, J. Zhao, Positive solutions for a fourth-order three-point BVP with sign-changing Green’s function, Electron. J. Qual. Theory Differ. Equ., 5 (2018), 1-11.
  • [18] A. Cabada, R. Enguica, L. Lopez-Somoza, Positive solutions for second-order boundary value problems with sign changing Green’s functions, Electron. J. Differential Equations, 245 (2017), 1–17.
  • [19] G. Infante, J. R. L. Webb, Three-point boundary value problems with solutions that change sign, J. Integral Equations Appl., 15(1) (2003), 37–57.
  • [20] J. P. Sun, X. Q.Wang, Existence and iteration of monotone positive solution of BVP for an elastic beam equation, Mathematical Problems in Engineering, 2011, Article ID 705740, 10 pages.
  • [21] J. P. Sun, J. ZHAO, Iterative technique for a third-order three-point BVP with sign-changing green’s function, Electron. J. Differential Equations, 2013(215) (2013), 1-9.
  • [22] Y. H. Zhao, X. L. Li, Iteration for a third-order three-point BVP with sign-changing green’s function, J. Appl. Math., (2014), Article ID 541234, 6 pages.
Year 2018, Volume: 1 Issue: 2, 205 - 211, 25.12.2018
https://doi.org/10.33401/fujma.418934

Abstract

References

  • [1] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.
  • [2] A. Cabada, S. Tersian, Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations, Bound. Value Probl., 105 (2014).
  • [3] D. R. Anderson, R. I. Avery, A fourth-order four-point right focal boundary value problem, Rocky Mountain J. Math., 36 (2006), 367-380.
  • [4] E. Alves, T. F. Ma, M. L. Pelicer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions, Nonlinear Anal., 71 (2009), 3834-3841.
  • [5] J. R. Graef, B. Yang, Positive solutions for fourth-order focal boundary value problem, Rocky mountain journal of mathematics, 44(3) (2014), 937-951.
  • [6] N. Bouteraa, S. Benaicha, H. Djourdem, M. E. Benattia, Positive solutions of nonlinear fourth-order two-point boundary value problem with a parameter, Romanian J. Math. Comput. Sci., 8(1) (2018), 17-30.
  • [7] N. Bouteraa, S. Benaicha, Triple positive solutions of higher-order nonlinear boundary value problems, J. Comput. Sci. Comput. Math., 7(2) (2017).
  • [8] R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis, Differ. Integral Equ., 2(1) (1989), 91–110.
  • [9] S. Lia, X. Zhanga, Existence and uniqueness of monotone positive solutions for an elastic beam equation with nonlinear boundary conditions, Comput. Math. Appl., 63 (2012), 1355–1360.
  • [10] W. Wang, Y. Zheng, H. Yang, J. Wang, Positive solutions for elastic beam equations with nonlinear boundary conditions and a parameter, Bound. Value Probl., 80 (2014), 1-17.
  • [11] Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, Journal of Mathematical Analysis and Applications, 281(2) (2003), 477–484.
  • [12] Z. Bai, The upper and lower solution method for some fourth-order boundary value problem, Nonlinear Anal., 67 (2007), 1704- 1709.
  • [13] Z. Bekri, S. Benaicha, Existence of positive of solution for a nonlinear three-point boundary value problem, Sib. ‘Elektron. Mat. Izv., 14 (2017), 1120–1134.
  • [14] A. P. Palamides, G. Smyrlis, Positive solutions to a singular third-order three-point BVP with an indefinitely signed Green’s function, Nonlinear Anal., 68 (2008), 2104-2118.
  • [15] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, 5, Academic Press, New York, NY, USA, 1988.
  • [16] M. A. Krasnoselskii, Positive Solutions of Opearator Equations, Noordhoff, Groningen, The Netherlands, 1964.
  • [17] Y. Zhang, J. P. Sun, J. Zhao, Positive solutions for a fourth-order three-point BVP with sign-changing Green’s function, Electron. J. Qual. Theory Differ. Equ., 5 (2018), 1-11.
  • [18] A. Cabada, R. Enguica, L. Lopez-Somoza, Positive solutions for second-order boundary value problems with sign changing Green’s functions, Electron. J. Differential Equations, 245 (2017), 1–17.
  • [19] G. Infante, J. R. L. Webb, Three-point boundary value problems with solutions that change sign, J. Integral Equations Appl., 15(1) (2003), 37–57.
  • [20] J. P. Sun, X. Q.Wang, Existence and iteration of monotone positive solution of BVP for an elastic beam equation, Mathematical Problems in Engineering, 2011, Article ID 705740, 10 pages.
  • [21] J. P. Sun, J. ZHAO, Iterative technique for a third-order three-point BVP with sign-changing green’s function, Electron. J. Differential Equations, 2013(215) (2013), 1-9.
  • [22] Y. H. Zhao, X. L. Li, Iteration for a third-order three-point BVP with sign-changing green’s function, J. Appl. Math., (2014), Article ID 541234, 6 pages.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Djourdem Habib

Slimane Benaicha This is me

Noureddine Bouteraa

Publication Date December 25, 2018
Submission Date April 27, 2018
Acceptance Date December 17, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Habib, D., Benaicha, S., & Bouteraa, N. (2018). Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem. Fundamental Journal of Mathematics and Applications, 1(2), 205-211. https://doi.org/10.33401/fujma.418934
AMA Habib D, Benaicha S, Bouteraa N. Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem. Fundam. J. Math. Appl. December 2018;1(2):205-211. doi:10.33401/fujma.418934
Chicago Habib, Djourdem, Slimane Benaicha, and Noureddine Bouteraa. “Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem”. Fundamental Journal of Mathematics and Applications 1, no. 2 (December 2018): 205-11. https://doi.org/10.33401/fujma.418934.
EndNote Habib D, Benaicha S, Bouteraa N (December 1, 2018) Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem. Fundamental Journal of Mathematics and Applications 1 2 205–211.
IEEE D. Habib, S. Benaicha, and N. Bouteraa, “Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem”, Fundam. J. Math. Appl., vol. 1, no. 2, pp. 205–211, 2018, doi: 10.33401/fujma.418934.
ISNAD Habib, Djourdem et al. “Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem”. Fundamental Journal of Mathematics and Applications 1/2 (December 2018), 205-211. https://doi.org/10.33401/fujma.418934.
JAMA Habib D, Benaicha S, Bouteraa N. Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem. Fundam. J. Math. Appl. 2018;1:205–211.
MLA Habib, Djourdem et al. “Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem”. Fundamental Journal of Mathematics and Applications, vol. 1, no. 2, 2018, pp. 205-11, doi:10.33401/fujma.418934.
Vancouver Habib D, Benaicha S, Bouteraa N. Existence and Iteration of Monotone Positive Solution for a Fourth-Order Nonlinear Boundary Value Problem. Fundam. J. Math. Appl. 2018;1(2):205-11.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a