Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 28 - 32, 17.06.2019
https://doi.org/10.33401/fujma.486878

Abstract

References

  • [1] K. Y. Wang, Q. S. Wang, Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations, J. Comput. Appl. Math., 260 (2014), 294-300.
  • [2] Q. S. Wang, K. Y. Wang, S. J. Chen, Least squares approximation method for the solution of Volterra-Fredholm integral equations, J. Comput. Appl. Math., 272 (2014), 141-147.
  • [3] K. Y. Wang, Q. S. Wang, K. Z. Guan, Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation, Appl. Math. Comput., 225 (2013), 631-637.
  • [4] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework (Third Edition), Springer, 2009.
  • [5] X. C. Zhong, A new Nyström-type method for Fredholm integral equations of the second kind, Appl. Math. Comput., 219 (2013), 8842-8847.
  • [6] L. J. Lardy, A Variation of Nyström’s Method for Hammerstein Equations, J. Integral. Equ., 3(1) (1981), 43-60.
  • [7] J. Dick, P. Kritzer, F. Y. Kuo, I. H. Sloan, Lattice-Nystr¨om method for Fredholm integral equations of the second kind with convolution type kernels, J. Complexity., 23 (2007), 752-772.
  • [8] Q. S. Wang, H. S. Wang, Meshless method and convergence analysis for 2-dimensional Fredholm integral equation with complex factors, J. Comput. Appl. Math., 304 (2016), 18-25.
  • [9] Z. Y. Chen, C. A. Micchelli, Y. S. Xu, Multiscale Methods for Fredholm Integral Equations, Cambridge University Press, 2015.

The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations

Year 2019, Volume: 2 Issue: 1, 28 - 32, 17.06.2019
https://doi.org/10.33401/fujma.486878

Abstract

In this paper, the efficient numerical solutions of a class of system of Fredholm integral equations are solved by the Nyström method, which discretizes the system of integral equations into solving a linear system. The existence and uniqueness of the exact solutions are proved by the Banach fixed point theorem. The format of the Nyström solutions is given, especially with the composite Trapezoidal and Simpson rules. The results of error estimation and convergence analysis are obtained in the infinite norm sense. The validity and reliability of the theoretical analysis are verified by numerical experiments.

References

  • [1] K. Y. Wang, Q. S. Wang, Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations, J. Comput. Appl. Math., 260 (2014), 294-300.
  • [2] Q. S. Wang, K. Y. Wang, S. J. Chen, Least squares approximation method for the solution of Volterra-Fredholm integral equations, J. Comput. Appl. Math., 272 (2014), 141-147.
  • [3] K. Y. Wang, Q. S. Wang, K. Z. Guan, Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation, Appl. Math. Comput., 225 (2013), 631-637.
  • [4] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework (Third Edition), Springer, 2009.
  • [5] X. C. Zhong, A new Nyström-type method for Fredholm integral equations of the second kind, Appl. Math. Comput., 219 (2013), 8842-8847.
  • [6] L. J. Lardy, A Variation of Nyström’s Method for Hammerstein Equations, J. Integral. Equ., 3(1) (1981), 43-60.
  • [7] J. Dick, P. Kritzer, F. Y. Kuo, I. H. Sloan, Lattice-Nystr¨om method for Fredholm integral equations of the second kind with convolution type kernels, J. Complexity., 23 (2007), 752-772.
  • [8] Q. S. Wang, H. S. Wang, Meshless method and convergence analysis for 2-dimensional Fredholm integral equation with complex factors, J. Comput. Appl. Math., 304 (2016), 18-25.
  • [9] Z. Y. Chen, C. A. Micchelli, Y. S. Xu, Multiscale Methods for Fredholm Integral Equations, Cambridge University Press, 2015.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Huimin Zhou This is me 0000-0003-3078-7652

Qisheng Wang 0000-0001-6254-2938

Publication Date June 17, 2019
Submission Date November 23, 2018
Acceptance Date March 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Zhou, H., & Wang, Q. (2019). The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations. Fundamental Journal of Mathematics and Applications, 2(1), 28-32. https://doi.org/10.33401/fujma.486878
AMA Zhou H, Wang Q. The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations. Fundam. J. Math. Appl. June 2019;2(1):28-32. doi:10.33401/fujma.486878
Chicago Zhou, Huimin, and Qisheng Wang. “The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations”. Fundamental Journal of Mathematics and Applications 2, no. 1 (June 2019): 28-32. https://doi.org/10.33401/fujma.486878.
EndNote Zhou H, Wang Q (June 1, 2019) The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations. Fundamental Journal of Mathematics and Applications 2 1 28–32.
IEEE H. Zhou and Q. Wang, “The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations”, Fundam. J. Math. Appl., vol. 2, no. 1, pp. 28–32, 2019, doi: 10.33401/fujma.486878.
ISNAD Zhou, Huimin - Wang, Qisheng. “The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations”. Fundamental Journal of Mathematics and Applications 2/1 (June 2019), 28-32. https://doi.org/10.33401/fujma.486878.
JAMA Zhou H, Wang Q. The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations. Fundam. J. Math. Appl. 2019;2:28–32.
MLA Zhou, Huimin and Qisheng Wang. “The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 1, 2019, pp. 28-32, doi:10.33401/fujma.486878.
Vancouver Zhou H, Wang Q. The Nyström Method and Convergence Analysis for System of Fredholm Integral Equations. Fundam. J. Math. Appl. 2019;2(1):28-32.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a