Research Article
BibTex RIS Cite

Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity

Year 2020, Volume: 3 Issue: 1, 29 - 32, 10.06.2020
https://doi.org/10.33401/fujma.716406

Abstract

We have given a simple contact Hamiltonian description of a system with exponentially vanishing (or zero) potential under a friction term that is quadratic in velocity. We have given two applications: to cavity solitons and to a free body under air friction.

Thanks

We would like to thank Metin Arık and Bayram Tekin for useful discussions. We also would like to Gülhan Ayar for bringing contact geometry to our attention.

References

  • [1] H. Geiges, A brief history of contact geometry and topology, Expo. Math., 19(1) (2001), 25–53.
  • [2] H. Geiges, Christiaan huygens and contact geometry, (2005) arXiv:math/0501255.
  • [3] A. Bravetti, H. Cruz, D. Tapias, Contact Hamiltonian mechanics, Ann. Phys.-New York, 376 (2017), 17–39.
  • [4] Q. Liu, P. J. Torres, C. Wang, Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Phys.-New York, 395 (2018), 26–44.
  • [5] D. Sloan, Dynamical similarity. Phys. Rev. D, 97(12) (2018), 123541.
  • [6] E. Anderson, J. Barbour, B. Foster, N. O Murchadha, Scale-invariant gravity: Geometrodynamics. Classical Quant. Grav., 20 (2003), 1571–1604.
  • [7] E. Anderson, J. Barbour, B. Z. Foster, B. Kelleher, N. O. Murchadha, The physical gravitational degrees of freedom, Classical Quant. Grav., 22 (2005), 1795–1802.
  • [8] J. Barbour, N. O Murchadha, Classical and Quantum Gravity on Conformal Superspace, (1999), arXiv:gr-qc/9911071.
  • [9] F. Mercati, A Shape Dynamics Tutorial, (2014), arXiv:1409.0105.
  • [10] S. R. Anbardan, C. Rimoldi, R. Kheradmand, G. Tissoni, F. Prati, Exponentially decaying interaction potential of cavity solitons, Phys. Rev. E, 97(3) (2018), 032208.
  • [11] L. A. Lugiato, F. Prati, M. Brambilla, L. Columbo, S. Barland, G. Tissoni, K. M. Aghdami, R. Kheradmand, H. Tajalli, H. Vahed, Cavity solitons, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics, Springer, 2013, 395–404.
Year 2020, Volume: 3 Issue: 1, 29 - 32, 10.06.2020
https://doi.org/10.33401/fujma.716406

Abstract

References

  • [1] H. Geiges, A brief history of contact geometry and topology, Expo. Math., 19(1) (2001), 25–53.
  • [2] H. Geiges, Christiaan huygens and contact geometry, (2005) arXiv:math/0501255.
  • [3] A. Bravetti, H. Cruz, D. Tapias, Contact Hamiltonian mechanics, Ann. Phys.-New York, 376 (2017), 17–39.
  • [4] Q. Liu, P. J. Torres, C. Wang, Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Phys.-New York, 395 (2018), 26–44.
  • [5] D. Sloan, Dynamical similarity. Phys. Rev. D, 97(12) (2018), 123541.
  • [6] E. Anderson, J. Barbour, B. Foster, N. O Murchadha, Scale-invariant gravity: Geometrodynamics. Classical Quant. Grav., 20 (2003), 1571–1604.
  • [7] E. Anderson, J. Barbour, B. Z. Foster, B. Kelleher, N. O. Murchadha, The physical gravitational degrees of freedom, Classical Quant. Grav., 22 (2005), 1795–1802.
  • [8] J. Barbour, N. O Murchadha, Classical and Quantum Gravity on Conformal Superspace, (1999), arXiv:gr-qc/9911071.
  • [9] F. Mercati, A Shape Dynamics Tutorial, (2014), arXiv:1409.0105.
  • [10] S. R. Anbardan, C. Rimoldi, R. Kheradmand, G. Tissoni, F. Prati, Exponentially decaying interaction potential of cavity solitons, Phys. Rev. E, 97(3) (2018), 032208.
  • [11] L. A. Lugiato, F. Prati, M. Brambilla, L. Columbo, S. Barland, G. Tissoni, K. M. Aghdami, R. Kheradmand, H. Tajalli, H. Vahed, Cavity solitons, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics, Springer, 2013, 395–404.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Furkan Semih Dündar 0000-0001-5184-5749

Publication Date June 10, 2020
Submission Date January 8, 2020
Acceptance Date January 21, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Dündar, F. S. (2020). Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity. Fundamental Journal of Mathematics and Applications, 3(1), 29-32. https://doi.org/10.33401/fujma.716406
AMA Dündar FS. Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity. Fundam. J. Math. Appl. June 2020;3(1):29-32. doi:10.33401/fujma.716406
Chicago Dündar, Furkan Semih. “Contact Hamiltonian Description of Systems With Exponentially Decreasing Force and Friction That Is Quadratic in Velocity”. Fundamental Journal of Mathematics and Applications 3, no. 1 (June 2020): 29-32. https://doi.org/10.33401/fujma.716406.
EndNote Dündar FS (June 1, 2020) Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity. Fundamental Journal of Mathematics and Applications 3 1 29–32.
IEEE F. S. Dündar, “Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity”, Fundam. J. Math. Appl., vol. 3, no. 1, pp. 29–32, 2020, doi: 10.33401/fujma.716406.
ISNAD Dündar, Furkan Semih. “Contact Hamiltonian Description of Systems With Exponentially Decreasing Force and Friction That Is Quadratic in Velocity”. Fundamental Journal of Mathematics and Applications 3/1 (June 2020), 29-32. https://doi.org/10.33401/fujma.716406.
JAMA Dündar FS. Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity. Fundam. J. Math. Appl. 2020;3:29–32.
MLA Dündar, Furkan Semih. “Contact Hamiltonian Description of Systems With Exponentially Decreasing Force and Friction That Is Quadratic in Velocity”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 29-32, doi:10.33401/fujma.716406.
Vancouver Dündar FS. Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity. Fundam. J. Math. Appl. 2020;3(1):29-32.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a