Research Article
BibTex RIS Cite

Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi

Year 2023, , 251 - 259, 28.03.2023
https://doi.org/10.35234/fumbd.1200371

Abstract

Fosil enerji kaynaklarının tükenmesi, sürekli artan petrol fiyatları ve atmosfere sera gazlarının hızla yayılmasıyla çevre sorunları için artan endişeler, araştırmacıları yenilenebilir kaynaklardan temiz ve sürdürülebilir enerji elde etmek için yeni teknikler geliştirmeye yönlendirmiştir. Birçok yenilenebilir seçenek arasından rüzgâr, güneş ve biyokütle enerjileri ana kaynaklar olarak kabul edilmektedir. Sürdürülebilir enerji gereksinimlerini karşılamak için biyokütle kaynaklarını kullanan en önemli yöntemlerden birisi de biyogaz teknolojisidir. Bu çalışmada, laboratuvar ölçekli bir sistemde biyokütle kaynağı olarak sığır gübresi, üzüm cibresi ve bunların birlikte fermantasyonuyla hazırlanan karışımdan biyogaz üretiminin araştırılması amaçlanmıştır. Bu kapsamda, oluşturulan bir biyogaz üretim sisteminde sığır gübresi, üzüm cibresi ve eşit oranlarda gübre ve cibre içeren karışımlardan %10 biyokütle oranı, 37°C fermantasyon sıcaklığı ve 60 devir/dakika karıştırma hızı şartlarında deneyler gerçekleştirilmiştir. Anaerobik şartlar altında yürütülen deneylerle zamana bağlı olarak oluşan biyogaz miktarları, gazın karbondioksit içeriği ve pH değerleri belirlenmiştir. Çalışmada, 10 günlük anaerobik fermantasyon süresi sonunda sırasıyla sığır gübresi, üzüm cibresi ve bunların karışımları için elde edilen toplam biyogaz miktarları 26,3, 7,2 ve 9,8 L/kg kuru madde olarak tespit edilmiştir. Elde edilen toplam metan miktarları ise bu üç farklı materyal için sırasıyla 22,1, 5,8 ve 8,0 L/kg kuru madde olarak hesaplanmıştır.

References

  • Hagos K, Zong J, Li D, Liu C, anf Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and sustainable energy reviews 2017; 76, 1485-1496.
  • Chynoweth DP, Owens JM, and Legrand R. Renewable methane from anaerobic digestion of biomass. Renewable energy 2001; 22(1-3), 1-8.
  • Gurung A, Van Ginkel SW, Kang WC, Qambrani NA, and Oh SE. Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study. Energy 2012; 43(1), 396-401.
  • Barrera EL, Spanjers H, Dewulf J, Romero O, and Rosa, E. The sulfur chain in biogas production from sulfate‐rich liquid substrates: a review on dynamic modeling with vinasse as model substrate. Journal of Chemical Technology and Biotechnology 2013; 88(8), 1405-1420.
  • Naycharan M. The production of biofuels biogas, Promot. Renew. New Energies 2015; 2, 40.
  • Khanal SK, Lü F, Wong JW, Wu D, and Oechsner H. Anaerobic digestion beyond biogas. Bioresource Technology 2021; 337, 125378.
  • Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, and Berg W. Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 2012; 37(1), 277-284.
  • Scarlat N, Dallemand JF, Fahl F. Biogas: developments and perspectives in Europe. Renewable Energy 2018; 129:457–72.
  • Rao PV, Baral SS, Dey R, and Mutnuri S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and sustainable energy reviews 2010; 14(7), 2086-2094.
  • Nguyen LN, Kumar J, Vu MT, Mohammed JA, Pathak N, Commault AS, ... and Nghiem LD. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of the Total Environment 2021; 765, 142753.
  • Deepanraj B, Sivasubramanian V, and Jayaraj S. Biogas generation through anaerobic digestion process-an overview. Research Journal of Chemistry and Environment 2014; 18, 5.
  • Georgiadis AG, Charisiou ND, Gaber S, Polychronopoulou K, Yentekakis IV, and Goula MA. Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: an experimental and theoretical study. Acs Omega 2021; 6(23), 14774-14787.
  • Georgiadis AG, Charisiou N, Yentekakis IV, and Goula MA. Hydrogen sulfide (H2S) removal via MOFs. Materials 2020; 13(16), 3640.
  • Georgiadis AG, Charisiou ND, and Goula MA. Removal of hydrogen sulfide from various industrial gases: A review of the most promising adsorbing materials. Catalysts 2020; 10(5), 521.
  • Neshat SA, Mohammadi M, Najafpour GD, and Lahijani P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews 2017; 79, 308-322.
  • Ward AJ, Hobbs PJ, Holliman PJ, and Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology 2008; 99(17), 7928-7940.
  • Batstone D, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, ... and Vavilin VA. The IWA anaerobic digestion model no 1 (ADM1). Water Science and technology 2002; 45(10), 65-73.
  • Kell, CJK. Anaerobic co-digestion of fruit juice industry wastes with lignocellulosic biomass. Doctoral dissertation, Stellenbosch University, Stellenbosch, 2019.
  • Braun R, and Wellinger A. Potential of Co-digestion IEA Bioenergy 2002.
  • Holm-Nielsen JB, Al Seadi T, and Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource technology 2009; 100(22), 5478-5484.
  • Li X, Li L, Zheng M, Fu G, and Lar JS. Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy and Fuels 2009; 23(9), 4635-4639.
  • Kell CJK. Anaerobic co-digestion of fruit juice industry wastes with lignocellulosic biomass. Doctoral dissertation, Stellenbosch: Stellenbosch University, 2019.
  • Mshandete A, Kivaisi A, Rubindamayugi M, and Mattiasson BO. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource technology 2004; 95(1), 19-24.
  • Parawira W, Murto M, Zvauya R, and Mattiasson B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy 2004; 29(11), 1811-1823.
  • Angelidaki I, Chen X, Cui J, Kaparaju P, and Ellegaard L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Water research 2006; 40(14), 2621-2628.
  • Braun R, Brachtl E, and Grasmug M. Codigestion of proteinaceous industrial waste. Applied biochemistry and biotechnology 2003; 109(1), 139-153.
  • Weiland P. Anaerobic waste digestion in Germany–Status and recent developments. Biodegradation 2000; 11(6), 415-421.
  • Creamer KS, Chen, Y, Williams CM, and Cheng JJ. Stable thermophilic anaerobic digestion of dissolved air flotation (DAF) sludge by co-digestion with swine manure. Bioresource Technology 2010; 101(9), 3020-3024.
  • Zhang L, Lee,YW, and Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource technology 2011; 102(8), 5048-5059.
  • Bunea CI, Pop N, Babeş AC, Matea C, Dulf FV, and Bunea A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chemistry Central Journal 2012; 6(1), 1-9.
  • Walzem RL. Wine and health: state of proofs and research needs. Inflammopharmacology 2008; 16(6), 265-271.
  • Jabłoński SJ, Biernacki P, Steinigeweg S, and Łukaszewicz M. Continuous mesophilic anaerobic digestion of manure and rape oilcake–Experimental and modelling study. Waste Management 2015; 35, 105-110.
Year 2023, , 251 - 259, 28.03.2023
https://doi.org/10.35234/fumbd.1200371

Abstract

References

  • Hagos K, Zong J, Li D, Liu C, anf Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and sustainable energy reviews 2017; 76, 1485-1496.
  • Chynoweth DP, Owens JM, and Legrand R. Renewable methane from anaerobic digestion of biomass. Renewable energy 2001; 22(1-3), 1-8.
  • Gurung A, Van Ginkel SW, Kang WC, Qambrani NA, and Oh SE. Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study. Energy 2012; 43(1), 396-401.
  • Barrera EL, Spanjers H, Dewulf J, Romero O, and Rosa, E. The sulfur chain in biogas production from sulfate‐rich liquid substrates: a review on dynamic modeling with vinasse as model substrate. Journal of Chemical Technology and Biotechnology 2013; 88(8), 1405-1420.
  • Naycharan M. The production of biofuels biogas, Promot. Renew. New Energies 2015; 2, 40.
  • Khanal SK, Lü F, Wong JW, Wu D, and Oechsner H. Anaerobic digestion beyond biogas. Bioresource Technology 2021; 337, 125378.
  • Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, and Berg W. Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 2012; 37(1), 277-284.
  • Scarlat N, Dallemand JF, Fahl F. Biogas: developments and perspectives in Europe. Renewable Energy 2018; 129:457–72.
  • Rao PV, Baral SS, Dey R, and Mutnuri S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and sustainable energy reviews 2010; 14(7), 2086-2094.
  • Nguyen LN, Kumar J, Vu MT, Mohammed JA, Pathak N, Commault AS, ... and Nghiem LD. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of the Total Environment 2021; 765, 142753.
  • Deepanraj B, Sivasubramanian V, and Jayaraj S. Biogas generation through anaerobic digestion process-an overview. Research Journal of Chemistry and Environment 2014; 18, 5.
  • Georgiadis AG, Charisiou ND, Gaber S, Polychronopoulou K, Yentekakis IV, and Goula MA. Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: an experimental and theoretical study. Acs Omega 2021; 6(23), 14774-14787.
  • Georgiadis AG, Charisiou N, Yentekakis IV, and Goula MA. Hydrogen sulfide (H2S) removal via MOFs. Materials 2020; 13(16), 3640.
  • Georgiadis AG, Charisiou ND, and Goula MA. Removal of hydrogen sulfide from various industrial gases: A review of the most promising adsorbing materials. Catalysts 2020; 10(5), 521.
  • Neshat SA, Mohammadi M, Najafpour GD, and Lahijani P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews 2017; 79, 308-322.
  • Ward AJ, Hobbs PJ, Holliman PJ, and Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology 2008; 99(17), 7928-7940.
  • Batstone D, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, ... and Vavilin VA. The IWA anaerobic digestion model no 1 (ADM1). Water Science and technology 2002; 45(10), 65-73.
  • Kell, CJK. Anaerobic co-digestion of fruit juice industry wastes with lignocellulosic biomass. Doctoral dissertation, Stellenbosch University, Stellenbosch, 2019.
  • Braun R, and Wellinger A. Potential of Co-digestion IEA Bioenergy 2002.
  • Holm-Nielsen JB, Al Seadi T, and Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource technology 2009; 100(22), 5478-5484.
  • Li X, Li L, Zheng M, Fu G, and Lar JS. Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy and Fuels 2009; 23(9), 4635-4639.
  • Kell CJK. Anaerobic co-digestion of fruit juice industry wastes with lignocellulosic biomass. Doctoral dissertation, Stellenbosch: Stellenbosch University, 2019.
  • Mshandete A, Kivaisi A, Rubindamayugi M, and Mattiasson BO. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource technology 2004; 95(1), 19-24.
  • Parawira W, Murto M, Zvauya R, and Mattiasson B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy 2004; 29(11), 1811-1823.
  • Angelidaki I, Chen X, Cui J, Kaparaju P, and Ellegaard L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Water research 2006; 40(14), 2621-2628.
  • Braun R, Brachtl E, and Grasmug M. Codigestion of proteinaceous industrial waste. Applied biochemistry and biotechnology 2003; 109(1), 139-153.
  • Weiland P. Anaerobic waste digestion in Germany–Status and recent developments. Biodegradation 2000; 11(6), 415-421.
  • Creamer KS, Chen, Y, Williams CM, and Cheng JJ. Stable thermophilic anaerobic digestion of dissolved air flotation (DAF) sludge by co-digestion with swine manure. Bioresource Technology 2010; 101(9), 3020-3024.
  • Zhang L, Lee,YW, and Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource technology 2011; 102(8), 5048-5059.
  • Bunea CI, Pop N, Babeş AC, Matea C, Dulf FV, and Bunea A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chemistry Central Journal 2012; 6(1), 1-9.
  • Walzem RL. Wine and health: state of proofs and research needs. Inflammopharmacology 2008; 16(6), 265-271.
  • Jabłoński SJ, Biernacki P, Steinigeweg S, and Łukaszewicz M. Continuous mesophilic anaerobic digestion of manure and rape oilcake–Experimental and modelling study. Waste Management 2015; 35, 105-110.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Abdulkadir Gül 0000-0003-4879-6194

H.soner Altundogan 0000-0003-3328-9667

Publication Date March 28, 2023
Submission Date November 7, 2022
Published in Issue Year 2023

Cite

APA Gül, A., & Altundogan, H. (2023). Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(1), 251-259. https://doi.org/10.35234/fumbd.1200371
AMA Gül A, Altundogan H. Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2023;35(1):251-259. doi:10.35234/fumbd.1200371
Chicago Gül, Abdulkadir, and H.soner Altundogan. “Sığır Gübresi Ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, no. 1 (March 2023): 251-59. https://doi.org/10.35234/fumbd.1200371.
EndNote Gül A, Altundogan H (March 1, 2023) Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 1 251–259.
IEEE A. Gül and H. Altundogan, “Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, pp. 251–259, 2023, doi: 10.35234/fumbd.1200371.
ISNAD Gül, Abdulkadir - Altundogan, H.soner. “Sığır Gübresi Ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/1 (March 2023), 251-259. https://doi.org/10.35234/fumbd.1200371.
JAMA Gül A, Altundogan H. Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:251–259.
MLA Gül, Abdulkadir and H.soner Altundogan. “Sığır Gübresi Ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, 2023, pp. 251-9, doi:10.35234/fumbd.1200371.
Vancouver Gül A, Altundogan H. Sığır Gübresi ve Üzüm Cibresinden Birlikte Fermantasyon Yoluyla Biyogaz Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(1):251-9.