Research Article
BibTex RIS Cite

Analysis of Stress Distribution Occurring in Guide Rails for Different Positions of Elevator Car by Finite Element Method

Year 2023, , 923 - 935, 01.09.2023
https://doi.org/10.35234/fumbd.1272957

Abstract

The elevator car moves up and down by means of guide rails on a pedestal inside the hoistway. Guide rails can be damaged during movement due to the stresses caused by suddenly movement waves. The study was carried out to determine the stresses that occur in the guide rails during sudden movement fluctuations. In the study, the traffic calculation of a 10-person elevator with 2 apartments on each floor of 10 floors was taken into account. The stresses that will occur in the car guide rails depending on the car loadings were investigated in ANSYS21.R2 with ANSYS Workbench, where a maximum load of 6300 N acts on the car floor and with a finite element analysis with a safety factor of 1,5. Theoretical and analysis results were compared. Theoretical and analysis results were compared. Theoretical Normal stress is 3,407 MPa, Von-misses stress is 5,735 MPa, normal stress is 12,182 MPa and Von-misses stress 17,933 MPa in the analysis for the centrally guided suspended cabin safety condition. For decentralized cabinet safety situation, stresses were obtained 4,32 and 7,705 MPa Normal stress, Von-misses stress in theory, 15,401 and 22,4 MPa Normal stress and Von-misses stresses in analysis, respectively. In the side-guided cabin safety gear, the theoretical Normal stress was 9,052 MPa, the Von-misses stress was 12,438 MPa, the normal stress was 31,139 MPa, and the Von-misses stress was 48,234 MPa in the analysis. As a result, it was seen that the normal and Von-misses stresses obtained in theory were lower than the normal and Von-misses stresses obtained in the numerical analysis. Accordingly, it has been determined that the most suitable cabin type is the centrally guided cabin type.

Project Number

Yok

References

  • Tyni T, Ylinen J. Evolutionary bi-objective optimization in the elevator car routing problem. European Journal of Operational Research (EJOR). 169 (3): 960-977, 2006.
  • Onur YA, İmrak CE. Computer aided car frame modelling and stress analysis. Elevator Technology 16: Proceedings of Elevcon. Helsinki, Finland: IAEE Public. 2006.
  • Babalık FC, Çavdar K, Sakalar M, Meshur B. Analysis and finite elements method aided design of elevator car suspensions. Asansör Dünyası, 55: 74–79, 2003.
  • Sachs HM. Opportunities for Elevator Energy Efficiency Improvements. American Council for an Energy-Efficient Economy (ACEEE), Washington, DC, April, 2005.
  • Liu J, Qiao F, Chang L. The hybrid predictive model of elevator system for energy consumption. Proceedings of the 2010 International Conference on Modeling, Identification and Control, Okayama, Japan, 17-19 Jul. 2010.
  • Lindegger U. The studies in europe and the energy efficiency guideline. VDI 4707, Elevcon, 2010.
  • Hakala H, Siikonen ML, Tyni T, Ylinen J. Energy-Efficient Elevators for Tall Buildings. 6th World Congress on Tall Buildings and Urban Habitat, February/March, 2001.
  • Patrao C, Rivet L, Fong J, Almedia A. Energy efficient elevators and escalators. ECEEE (2009); 803–813, 2009.
  • Bennet BS. Simulation fundamentals. 1st ed., Prentice Hall International Series in System and Control Engineering, UK, 1995.
  • Patrão C, Almeida AD, Fong J, Ferreira F. Elevators and escalators energy performance analysis. Proc. 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, August 2010.
  • De Almeidaa A, Hirzelb S, Patrãoa C, Fonga J, Dütschkeb E. Energy-efficient elevators and escalators in Europe: an analysis of energy efficiency potentials and policy measures. Energy and Buildings, 47: 151-158, 2012.
  • Hamad QS, Ali Y, Fadhil HA, Al-Janabi M, Ahmed F. Elevator exhaustion time reduction by eliminating fake demands. 2020 International Multi-Disciplinary Conference: Sustainable Development and Smart Planning. June 28-30, 2020.
  • Ongun E, Demir A. Improving the performance and energy efficiency of elevators by direct-landing elevator position control system. International Conference on Electrical & Electronic Engineering. IEEE. 2017.
  • Hamad QS, Croock MS, Qaraawi SA. Efficient infrared sensor and camera based monitoring system. 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering (ICECCPCE). 2014.
  • Peng Q, Li Z, Yuan H, Huang G, Li S, Sun X. A model-based unloaded test method for analysis of braking capacity of elevator brake. Advances in Materials Science and Engineering, pp: 1-10. 2018.
  • Durak E, Yurtseven HA. Experimental study of the tribological properties of an elevator's brake linings. Industrial Lubrication & Tribology, 68(6): 683-688, 2016.
  • Pan G, Lei C. Impact analysis of brake pad backplate structure and friction lining material on disc-brake noise. Advances in Materials Science & Engineering, pp.1-9, 2018.
  • Durak E, Yurtseven HA. Experimental study of the tribological properties of an elevator’s brake linings. Industrial Lubrication and Tribology, 68(6): 683-688, 2016.
  • Kalikate SM, Patil SR, Sawant SM. Simulationbased estimation of an automotive magnetorheological brake system performance. Journal of Advanced Research, 14, 43-51, 2018.
  • Skog I, Karagiannis I, Bergsten, H¨ard´en J, Gustafsson L, H¨andel P. A smart sensor node for the internet-of-elevators-non-invasive condition and fault monitoring. IEEE Sensors Journal, 17(16): 5198–5208, 2017.
  • Xu B, Cheng M, Yang H, Zhang J, Yang M. Safety brake performance evaluation and optimization of hydraulic lifting systems in case of overspeed dropping. Mechatronics, 23(8), 1180-1190. 2013.
  • Longwic R, Szydło K. E impact of the elevator guides contamination on the braking process delay for selected progressive gears. Advances in Science and Technology Research Journal, 11(2): 1-7, 2017.
  • Yan H, Xu Z, Yuan J, Liang L, Cao T, W. Ge W. Friction characteristics of synchronization process based on triho thermodynamics. Advances in Materials Science and Engineering, vol. 2018, Article ID 8467921, 9 pages, 2018.
  • Othman Saba A, Mohammed Jamal AK, Mohammed Farag M. Numerical Analysis of Linear Elevator Structure Using Finite Element Method. Engineering and Technology Journal, 39(09): 1430-1436, 2021.
  • Adak MF, Duru N, Duru HT. Elevator simulator design and estimating energy consumption of an elevator system. Energy and Buildings, 65: 272-280, 2013.
  • Jiang T, Wang Z, Ren Z, Liu G, Ren F. Analysis on mechanical characteristics of brake wheel and brake shoe of elevator traction machine. 4th International Conference on Mechanical, Electrical and Material Application (MEMA-2021) Vol. 2125, 29-31 October 2021, Chongqing, China, 2021.
  • Peng Q, Li Z, Yuan H, Sun X, Huang G, Li S. A Model-Based Unloaded Test Method for Analysis of Braking Capacity of Elevator Brake. Advances in Materials Science and Engineering-Hindawi, Volume 2018, Article ID 8047490, 10 pages, 2018.
  • İmrak CE. A Survey for the Effect of 2011 Van Earthquakes on Elevators. Erişim:https://www.aysad.org.tr/wp-ontent/uploads/2018/09/Van Survey Appendixes.pdf, 2012.
  • Wang X, Hutchinson TC, Astroza R, Conte JP, Restrepo JI, Hoehler MS, Ribeiro W. Shake table testing of an elevator system in a full-scale five-story building. Earthquake Engineering and Structural Dynamics, 46(3): 391-407. 2017
  • Wang X, Günay S, Lu W. Seismic analysis of the rail-counterweight system in elevators considering the stiffness of rail brackets. Advances in Structural Engineering, 2020.
  • Wang X, Günay S, Lu W. Mechanical model and seismic study of the roller guide–rail assembly in the counterweight system of elevators. Earthquake Engineering and Structural Dynamics, 50(2): 518-537, 2021.
  • Mazza F, Labernarda R. Internal Pounding Between Structural Parts of Seismically Isolated Buildings. Journal of Earthquake Engineering. 2021.
  • Kayaoğlu E, Salman Ö, Candaş, A. Study on stress and deformation of an elevator safety gear brake block using experimental and FEA methods. Advanced Materials Research, 308-310: 2011.
  • İmrak CE, Gerdemeli İ. Asansörler ve Yürüyen Merdivenler. Birsen Yayınevi, İstanbul, 2000.

Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi

Year 2023, , 923 - 935, 01.09.2023
https://doi.org/10.35234/fumbd.1272957

Abstract

Asansör kabini asansör kuyusu içinde bir kaide üzerinde kılavuz raylar aracılığıyla aşağı-yukarı hareket etmektedir. Kılavuz raylar hareket sırasında ani hareket dalgalarının meydana getirdiği zorlanmalar nedeniyle hasar görebilirler. Çalışma ani hareket dalgalanmaları sırasında kılavuz raylarda oluşan gerilmelerin tespit edilmesi amacıyla yapılmıştır. Çalışmada 10 katlı her katında 2 daire bulunan 10 kişilik bir asansörün trafik hesabı dikkate alınmıştır. Kabin yüklemelerine bağlı olarak kabin kılavuz raylarında oluşacak gerilmeler ANSYS21.R2’de ANSYS Workbench ile maksimum 6300 N’luk yükün kabin zemininde etki ettiği ve 1.5 güvenlik faktöründe Sonlu elemanlar analizi ile incelenmiştir. Teorik ve analiz sonuçları karşılaştırılmıştır. Merkezden kılavuzlanmış asılı kabin güvenlik durumu için teorik Normal gerilme 3,407 MPa, Von misses gerilmesi 5,735 MPa, analizde normal gerilme 12,182 MPa ve Von-misses gerilmesi 17,933 MPa olarak elde edilmişlerdir. Merkezden kaçık tip kabin güvenlik tertibatında teorik Normal gerilme 4,32 MPa, Von misses gerilmesi 7,705 MPa, analizde normal gerilme 15,401 MPa, Von-misses gerilmesi 22,4 MPa dır. Yandan kılavuzlanmış kabin güvenlik tertibatında teorik Normal gerilme 9.052 MPa, Von-misses gerilmesi 12.438 MPa, analizde normal gerilme 31.139 MPa, Von-misses gerilmesi 48.234 MPa olarak elde edilmişlerdir. Sonuç olarak, teorik elde edilen normal ve Von misses gerilmelerinin analizde elde edilen normal ve Von-misses gerilmelerinden daha düşük olduğu görülmüştür. Buna göre en uygun kabin tipinin merkezden kılavuzlanmış kabin tipi olduğu tespit edilmiştir.

Supporting Institution

Yok

Project Number

Yok

References

  • Tyni T, Ylinen J. Evolutionary bi-objective optimization in the elevator car routing problem. European Journal of Operational Research (EJOR). 169 (3): 960-977, 2006.
  • Onur YA, İmrak CE. Computer aided car frame modelling and stress analysis. Elevator Technology 16: Proceedings of Elevcon. Helsinki, Finland: IAEE Public. 2006.
  • Babalık FC, Çavdar K, Sakalar M, Meshur B. Analysis and finite elements method aided design of elevator car suspensions. Asansör Dünyası, 55: 74–79, 2003.
  • Sachs HM. Opportunities for Elevator Energy Efficiency Improvements. American Council for an Energy-Efficient Economy (ACEEE), Washington, DC, April, 2005.
  • Liu J, Qiao F, Chang L. The hybrid predictive model of elevator system for energy consumption. Proceedings of the 2010 International Conference on Modeling, Identification and Control, Okayama, Japan, 17-19 Jul. 2010.
  • Lindegger U. The studies in europe and the energy efficiency guideline. VDI 4707, Elevcon, 2010.
  • Hakala H, Siikonen ML, Tyni T, Ylinen J. Energy-Efficient Elevators for Tall Buildings. 6th World Congress on Tall Buildings and Urban Habitat, February/March, 2001.
  • Patrao C, Rivet L, Fong J, Almedia A. Energy efficient elevators and escalators. ECEEE (2009); 803–813, 2009.
  • Bennet BS. Simulation fundamentals. 1st ed., Prentice Hall International Series in System and Control Engineering, UK, 1995.
  • Patrão C, Almeida AD, Fong J, Ferreira F. Elevators and escalators energy performance analysis. Proc. 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, August 2010.
  • De Almeidaa A, Hirzelb S, Patrãoa C, Fonga J, Dütschkeb E. Energy-efficient elevators and escalators in Europe: an analysis of energy efficiency potentials and policy measures. Energy and Buildings, 47: 151-158, 2012.
  • Hamad QS, Ali Y, Fadhil HA, Al-Janabi M, Ahmed F. Elevator exhaustion time reduction by eliminating fake demands. 2020 International Multi-Disciplinary Conference: Sustainable Development and Smart Planning. June 28-30, 2020.
  • Ongun E, Demir A. Improving the performance and energy efficiency of elevators by direct-landing elevator position control system. International Conference on Electrical & Electronic Engineering. IEEE. 2017.
  • Hamad QS, Croock MS, Qaraawi SA. Efficient infrared sensor and camera based monitoring system. 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering (ICECCPCE). 2014.
  • Peng Q, Li Z, Yuan H, Huang G, Li S, Sun X. A model-based unloaded test method for analysis of braking capacity of elevator brake. Advances in Materials Science and Engineering, pp: 1-10. 2018.
  • Durak E, Yurtseven HA. Experimental study of the tribological properties of an elevator's brake linings. Industrial Lubrication & Tribology, 68(6): 683-688, 2016.
  • Pan G, Lei C. Impact analysis of brake pad backplate structure and friction lining material on disc-brake noise. Advances in Materials Science & Engineering, pp.1-9, 2018.
  • Durak E, Yurtseven HA. Experimental study of the tribological properties of an elevator’s brake linings. Industrial Lubrication and Tribology, 68(6): 683-688, 2016.
  • Kalikate SM, Patil SR, Sawant SM. Simulationbased estimation of an automotive magnetorheological brake system performance. Journal of Advanced Research, 14, 43-51, 2018.
  • Skog I, Karagiannis I, Bergsten, H¨ard´en J, Gustafsson L, H¨andel P. A smart sensor node for the internet-of-elevators-non-invasive condition and fault monitoring. IEEE Sensors Journal, 17(16): 5198–5208, 2017.
  • Xu B, Cheng M, Yang H, Zhang J, Yang M. Safety brake performance evaluation and optimization of hydraulic lifting systems in case of overspeed dropping. Mechatronics, 23(8), 1180-1190. 2013.
  • Longwic R, Szydło K. E impact of the elevator guides contamination on the braking process delay for selected progressive gears. Advances in Science and Technology Research Journal, 11(2): 1-7, 2017.
  • Yan H, Xu Z, Yuan J, Liang L, Cao T, W. Ge W. Friction characteristics of synchronization process based on triho thermodynamics. Advances in Materials Science and Engineering, vol. 2018, Article ID 8467921, 9 pages, 2018.
  • Othman Saba A, Mohammed Jamal AK, Mohammed Farag M. Numerical Analysis of Linear Elevator Structure Using Finite Element Method. Engineering and Technology Journal, 39(09): 1430-1436, 2021.
  • Adak MF, Duru N, Duru HT. Elevator simulator design and estimating energy consumption of an elevator system. Energy and Buildings, 65: 272-280, 2013.
  • Jiang T, Wang Z, Ren Z, Liu G, Ren F. Analysis on mechanical characteristics of brake wheel and brake shoe of elevator traction machine. 4th International Conference on Mechanical, Electrical and Material Application (MEMA-2021) Vol. 2125, 29-31 October 2021, Chongqing, China, 2021.
  • Peng Q, Li Z, Yuan H, Sun X, Huang G, Li S. A Model-Based Unloaded Test Method for Analysis of Braking Capacity of Elevator Brake. Advances in Materials Science and Engineering-Hindawi, Volume 2018, Article ID 8047490, 10 pages, 2018.
  • İmrak CE. A Survey for the Effect of 2011 Van Earthquakes on Elevators. Erişim:https://www.aysad.org.tr/wp-ontent/uploads/2018/09/Van Survey Appendixes.pdf, 2012.
  • Wang X, Hutchinson TC, Astroza R, Conte JP, Restrepo JI, Hoehler MS, Ribeiro W. Shake table testing of an elevator system in a full-scale five-story building. Earthquake Engineering and Structural Dynamics, 46(3): 391-407. 2017
  • Wang X, Günay S, Lu W. Seismic analysis of the rail-counterweight system in elevators considering the stiffness of rail brackets. Advances in Structural Engineering, 2020.
  • Wang X, Günay S, Lu W. Mechanical model and seismic study of the roller guide–rail assembly in the counterweight system of elevators. Earthquake Engineering and Structural Dynamics, 50(2): 518-537, 2021.
  • Mazza F, Labernarda R. Internal Pounding Between Structural Parts of Seismically Isolated Buildings. Journal of Earthquake Engineering. 2021.
  • Kayaoğlu E, Salman Ö, Candaş, A. Study on stress and deformation of an elevator safety gear brake block using experimental and FEA methods. Advanced Materials Research, 308-310: 2011.
  • İmrak CE, Gerdemeli İ. Asansörler ve Yürüyen Merdivenler. Birsen Yayınevi, İstanbul, 2000.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Machine Design and Machine Equipment, Mechanical Engineering (Other)
Journal Section MBD
Authors

Cebeli Özek 0000-0001-7603-415X

Emre Süer 0000-0003-4632-963X

Project Number Yok
Publication Date September 1, 2023
Submission Date March 29, 2023
Published in Issue Year 2023

Cite

APA Özek, C., & Süer, E. (2023). Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 923-935. https://doi.org/10.35234/fumbd.1272957
AMA Özek C, Süer E. Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2023;35(2):923-935. doi:10.35234/fumbd.1272957
Chicago Özek, Cebeli, and Emre Süer. “Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu Ile Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, no. 2 (September 2023): 923-35. https://doi.org/10.35234/fumbd.1272957.
EndNote Özek C, Süer E (September 1, 2023) Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 2 923–935.
IEEE C. Özek and E. Süer, “Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 2, pp. 923–935, 2023, doi: 10.35234/fumbd.1272957.
ISNAD Özek, Cebeli - Süer, Emre. “Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu Ile Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/2 (September 2023), 923-935. https://doi.org/10.35234/fumbd.1272957.
JAMA Özek C, Süer E. Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:923–935.
MLA Özek, Cebeli and Emre Süer. “Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu Ile Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 2, 2023, pp. 923-35, doi:10.35234/fumbd.1272957.
Vancouver Özek C, Süer E. Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(2):923-35.