Research Article
BibTex RIS Cite

Yapıların Dinamik Sönümleme ve Statik Dayanım Yeteneklerinin Eş Zamanlı Olarak Geliştirilmesi: Uçucu Kül Esaslı Geopolimer Beton Numuneler Üzerinde Modal, Mekanik ve Mikroyapısal İncelemeler Kullanılarak Gerçekleştirilen Bir Vaka Çalışması

Year 2024, , 883 - 901, 30.09.2024
https://doi.org/10.35234/fumbd.1480600

Abstract

Portland çimentosu (OPC) betonu için hem dinamik sönümlemeyi hem de statik dayanımı aynı anda artırmak, önemli bir zorluktur. Geopolimer beton (GPC), özellikle uçucu kül bazlı GPC, umut verici bir alternatif sunmaktadır. Bu çalışma, düşük kalsiyumlu uçucu kül bazlı GPC'de sönümleme ve dayanım arasındaki ilişkiyi, sodyum silikat (SS) ve sodyum hidroksit (SH) aktivatörleri kullanarak araştırmaktadır. Bulgular, SS aktivatörlerinin SH aktivatörlerine kıyasla sönümleme ve dayanım arasında daha güçlü pozitif korelasyonlar gösterdiğini ortaya koymaktadır. Mikroyapı analizi, SS dozajının 55 kg/m³'ten 98 kg/m³'e artırılmasının dinamik sönümleme oranlarında %17 ve statik basınç dayanımında %39 artışa neden olduğunu göstermiştir. Bu sonuçlar, GPC'nin OPC betona kıyasla her iki özelliğin de artırılması gereken uygulamalarda üstün olma potansiyelini vurgulamakta ve OPC ile tipik olarak elde edilemeyen çift fayda sunmaktadır. Çalışma, GPC'nin yeteneklerini daha iyi anlamaya katkıda bulunarak, inşaat projelerinde daha geniş çapta benimsenmesinin önünü açmaktadır.

Supporting Institution

TÜBİTAK-1001

Project Number

121M236

Thanks

This research was supported by the TUBITAK (The Scientific and Technological Research Council of Türkiye).

References

  • Remennikov AM, Kaewunruen S. A review of loading conditions for railway track structures due to train and track vertical interaction. Struct Control Health Monit 2008; 15(2): 207-234.
  • Cui Y, Hao H, Li J, Chen W. Effect of adding methylcellulose on mechanical and vibration properties of geopolymer paste and hybrid fiber-reinforced geopolymer composite. J Mater Civ Eng 2020; 32(7): 04020166.
  • Ou J, Liu T, Li J. Dynamic and seismic property experiments of high damping concrete and its frame models. Journal of Wuhan University of Technology-Mater Sci Ed 2008; 23(1): 1-6.
  • Shah AA, Ribakov Y. Recent trends in steel fibered high-strength concrete. Mater Des 2011; 32(8-9): 4122-4151.
  • Hadi MNS, Li J. External reinforcement of high strength concrete columns. Compos Struct 2004; 65(3-4): 279-287.
  • Tayeh BA, Bakar BA, Johari MM, Voo YL. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Constr Build Mater 2012; 36: 538-548.
  • Salman MM, Al-Amawee AH. The ratio between static and dynamic modulus of elasticity in normal and high strength concrete. Journal of Engineering and Sustainable Development 2006; 10(2): 163-174.
  • Alexa-Stratulat SM, Mihai P, Toma AM, Taranu G, Toma IO. Influence of Concrete Strength Class on the Long-Term Static and Dynamic Elastic Moduli of Concrete. Applied Sciences 2021; 11(24): 11671.
  • Zahid MM, Bakar BA, Nazri FM, Ab Rahim MA. A review on raw materials and curing methods applied in production of ultra high performance concrete. In: IOP Conference Series: Materials Science and Engineering 2020; p. 012202.
  • Ferdous W, Manalo A, Van Erp G, Aravinthan T, Kaewunruen S, Remennikov A. Composite railway sleepers–Recent developments, challenges and future prospects. Compos Struct 2015; 134: 158-168.
  • Aktaş B, Cecen F, Öztürk H, Navdar MB, Öztürk İŞ. Comparison of prestressed concrete railway sleepers and new LCR concrete sleepers with experimental modal analysis. Eng Fail Anal 2022; 131: 105821.
  • Lu JX, Shen P, Ali HA, Poon CS. Mix design and performance of lightweight ultra-high-performance concrete. Mater Des 2022; 216: 110553.
  • Liang C, Liu T, Xiao J, Zou D, Yang Q. The damping property of recycled aggregate concrete. Constr Build Mater 2016; 102: 834-842.
  • Tian Y, Shi S, Jia K, Hu S. Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion. Constr Build Mater 2015; 93: 1151-1156.
  • Zeitouni AI, Rizos DC, Qian Y. Benefits of high strength reduced modulus (HSRM) concrete railroad ties under center binding support conditions. Constr Build Mater 2018; 192: 210-223.
  • Giner VT, Baeza FJ, Ivorra S, Zornoza E, Galao Ó. Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater Des 2012; 34: 332-339.
  • Fu X, Chung DD. Vibration damping admixtures for cement. Cem Concr Res 1996; 26(1): 69-75.
  • Meesit R, Kaewunruen S. Vibration characteristics of micro-engineered crumb rubber concrete for railway sleeper applications. J Adv Concr Technol 2017; 15(2): 55-66.
  • Sukontasukkul P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Constr Build Mater 2009; 23(2): 1084-1092.
  • Zhou C, Pei X, Li W, Liu Y. Mechanical and damping properties of recycled aggregate concrete modified with air-entraining agent and polypropylene fiber. Materials 2020; 13(8): 2004.
  • Giner VT, Ivorra S, Baeza FJ, Zornoza E, Ferrer B. Silica fume admixture effect on the dynamic properties of concrete. Constr Build Mater 2011; 25(8): 3272-3277.
  • Warburton GB. The Dynamical Behaviour of Structures. 2nd Edition. New York: PERGAMON PRESS OXFORD, ISBN: 9781483187785, 1976.
  • Swamy N, Rigby G. Dynamic properties of hardened paste, mortar and concrete. Matériaux et construction 1971; 4: 13-40.
  • Salzmann, A. Damping characteristics of reinforced and prestressed normal-and high-strength concrete beams. Griffith University, 2003.
  • Eiras JN, Popovics JS, Borrachero MV, Monzó J, Payá J. The effects of moisture and micro-structural modifications in drying mortars on vibration-based NDT methods. Constr Build Mater 2015; 94: 565-571.
  • Provis JL, Brice DG, Buchwald A, Duxson P, Kavalerova E, Krivenko PV, Wiercx JALM. Demonstration projects and applications in building and civil infrastructure. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM 2014; 309-338.
  • Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani M. Clean production and properties of geopolymer concrete; A review. Cleaner Prod 2020; 251: 119679.
  • Bondar, D. Geo-polymer concrete as a new type of sustainable construction materials. In: Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies (ICSCMT) 2013; 18-21.
  • Guo X, Shi H, Dick WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos 2010; 32(2): 142-147.
  • Khan MZN, Hao Y, Hao H, Shaikh FUA. Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cem Concr Compos 2018; 85: 133-152.
  • Pan Z, Feng KN, Gong K, Zou B, Korayem AH, Sanjayan J, Collins F. Damping and microstructure of fly ash-based geopolymers. J Mater Sci 2013; 48: 3128-3137.
  • Özbayrak A, Kucukgoncu H, Atas O, Aslanbay HH, Aslanbay YG, Altun F. Determination of stress-strain relationship based on alkali activator ratios in geopolymer concretes and development of empirical formulations. Structures 2023; 2048-2061.
  • Cecen F, Özbayrak A, Aktaş B. Experimental modal analysis of fly ash-based geopolymer concrete specimens via modal circles, mode indication functions, and mode shape animations. Cem Concr Compos 2023; 137: 104951.
  • Okoye FN, Durgaprasad J, Singh NB. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 2016; 42(2): 3000-3006.
  • Farooq F, Jin X, Javed MF, Akbar A, Shah MI, Aslam F, Alyousef R. Geopolymer concrete as sustainable material: A state of the art review. Constr. Build. Mater. 2021; 306: 124762.
  • Gupta P, Nagpal G, Gupta N. Fly ash-based geopolymers: an emerging sustainable solution for heavy metal remediation from aqueous medium. Beni-Suef University Journal of Basic and Applied Sciences 2021; 10(1): 89.
  • Temuujin J, Minjigmaa A, Bayarzul U, Kim DS, Lee SH, Lee HJ, MacKenzie KJD. Properties of geopolymer binders prepared from milled pond ash. Materiales de Construccion 2017; 67(328): 134.
  • Acar MC, Şener A, Özbayrak A, Çelik Aİ. Geopolimer Harçlarda Zeolit Katkisinin Etkisİ. Mühendislik Bilimleri ve Tasarım Dergisi 2020; 8(3): 820-832.
  • Bernal SA, Provis JL. Durability of alkali‐activated materials: progress and perspectives. J Am Ceram Soc 2014; 97(4): 997-1008.
  • Adak D, Mandal S. Strength and durability performance of fly ash–based process-modified geopolymer concrete. J Mater Civ Eng 2019; 31(9): 04019174.
  • Özbayrak A, Kucukgoncu H, Aslanbay HH, Aslanbay YG. Atas O. Comprehensive experimental analysis of the effects of elevated temperatures in geopolymer concretes with variable alkali activator ratios, J Build Eng 2023; 68: 106108.
  • Luna-Galiano Y, Fernández-Pereira C, Izquierdo M. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Mater Constr 2016; 66(324): 098.
  • Ma Y, Hu J, Ye G. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash. J Mater Sci 2012; 47: 4568-4578.
  • Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem Concr Res 2002; 32(6): 865-879.
  • Çelik Aİ, Tunç U, Bahrami A, Karalar M, Mydin MAO, Alomayri T, Özkılıç YO. Use of waste glass powder toward more sustainable geopolymer concrete. J Mater Res Technol 2023; 24: 8533-8546.
  • Özkılıç YO, Çelik Aİ, Tunç U, Karalar M, Deifalla A, Alomayri T, Althoey F. The use of crushed recycled glass for alkali activated fly ash based geopolymer concrete and prediction of its capacity. J Mater Res Technol 2023; 24: 8267-8281.
  • Huang W, Wang H. Geopolymer pervious concrete modified with granulated blast furnace slag: Microscale characterization and mechanical strength. J Cleaner Prod 2021; 328: 129469.
  • Xiao R, Ma Y, Jiang X, Zhang M, Zhang Y, Wang Y, He Q. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J Cleaner Prod 2020; 252: 119610.
  • Huo W, Zhu Z, Sun H, Gao Q, Zhang J, Wan Y, Zhang C. Reaction kinetics, mechanical properties, and microstructure of nano-modified recycled concrete fine powder/slag based geopolymers. J Cleaner Prod 2022; 372: 133715.
  • Zhang Y, Xiao R, Jiang X, Li W, Zhu X, Huang B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Cleaner Prod 2020; 273: 122970.
  • Zhang Y, Xiao R, Jiang X, Li W, Zhu X, Huang B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Cleaner Prod 2020; 273: 122970.
  • Han G, Yang S, Peng W, Huang Y, Wu H, Chai W, Liu J. Enhanced recycling and utilization of mullite from coal fly ash with a flotation and metallurgy process. J Cleaner Prod 2018; 178: 804-813.
  • Xu W, Wen X, Wei J, Xu P, Zhang B, Yu Q, Ma H. Feasibility of kaolin tailing sand to be as an environmentally friendly alternative to river sand in construction applications. J Cleaner Prod 2018; 205: 1114-1126.
  • Zhou N, Zhang J, Ouyang S, Deng X, Dong C, Du E. Feasibility study and performance optimization of sand-based cemented paste backfill materials. J Cleaner Prod 2020; 259: 120798.
  • Fernández-Jiménez A, Palomo A, Criado M. Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 2005; 35(6): 1204-1209.
  • Çeçen F, Aktaş B. Modal and harmonic response analysis of new CFRP laminate reinforced concrete railway sleepers. Eng. Fail. Anal. 2021; 127: 105471.
  • Aktaş B, Cecen F, Öztürk H, Navdar MB, Öztürk İŞ. Comparison of prestressed concrete railway sleepers and new LCR concrete sleepers with experimental modal analysis. Eng Fail Anal 2022; 131: 105821.
  • Gjelstrup SL. What is modal analysis: the ultimate guide. DEWESoft, Available: https://dewesoft. com/daq/what-is-modal-analysis. [Accessed 11 06 2022], 2021.
  • Irretier HD. History and development of frequency domain methods in experimental modal analysis. J Phys 2002; 12(11): 11-91.
  • Avitabile P. Modal space-in our own little world. Exp Tech 2013; 37: 4-6.
  • Modal Test and Modal Analysis, https://training.dewesoft.com/online/course/modal-testing-frf#mode-indicator-function-mif, Accessed 14.09.2024
  • Šmilauer V, Hlaváček P, Škvára F, Šulc R, Kopecký L, Němeček J. Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J Mater Sci 2011; 46: 6545-6555.
  • Tian Y, Lu D, Zhou J, Yang Y, Wang Z. Damping property of cement mortar incorporating damping aggregate. Materials 2020; 13(3): 792.
  • Aslanbay YG, Aslanbay HH, Özbayrak A, Kucukgoncu H, Atas O. Comprehensive analysis of experimental and numerical results of bond strength and mechanical properties of fly ash based GPC and OPC concrete. Constr Build Mater 2024; 416: 135175.

Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations

Year 2024, , 883 - 901, 30.09.2024
https://doi.org/10.35234/fumbd.1480600

Abstract

Enhancing both the dynamic damping and static strength of ordinary Portland cement (OPC) concrete simultaneously is a significant challenge. Geopolymer concrete (GPC), particularly fly ash-based GPC, offers a promising alternative. This study explores the relationship between damping and strength in heat-cured, low-calcium fly ash-based GPC using sodium silicate (SS) and sodium hydroxide (SH) activators. The findings reveal that SS activators demonstrate stronger positive correlations between damping and strength compared to SH activators. Microstructural analysis indicated that increasing SS dosage from 55 kg/m³ to 98 kg/m³ resulted in a 17% increase in dynamic damping ratios and a 39% increase in static compressive strength. These results highlight the potential of GPC to surpass OPC concrete in applications requiring both enhanced damping and strength, offering a dual benefit not typically achievable with OPC. The study contributes to a deeper understanding of GPC's capabilities, paving the way for its broader adoption in construction projects.

Project Number

121M236

References

  • Remennikov AM, Kaewunruen S. A review of loading conditions for railway track structures due to train and track vertical interaction. Struct Control Health Monit 2008; 15(2): 207-234.
  • Cui Y, Hao H, Li J, Chen W. Effect of adding methylcellulose on mechanical and vibration properties of geopolymer paste and hybrid fiber-reinforced geopolymer composite. J Mater Civ Eng 2020; 32(7): 04020166.
  • Ou J, Liu T, Li J. Dynamic and seismic property experiments of high damping concrete and its frame models. Journal of Wuhan University of Technology-Mater Sci Ed 2008; 23(1): 1-6.
  • Shah AA, Ribakov Y. Recent trends in steel fibered high-strength concrete. Mater Des 2011; 32(8-9): 4122-4151.
  • Hadi MNS, Li J. External reinforcement of high strength concrete columns. Compos Struct 2004; 65(3-4): 279-287.
  • Tayeh BA, Bakar BA, Johari MM, Voo YL. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Constr Build Mater 2012; 36: 538-548.
  • Salman MM, Al-Amawee AH. The ratio between static and dynamic modulus of elasticity in normal and high strength concrete. Journal of Engineering and Sustainable Development 2006; 10(2): 163-174.
  • Alexa-Stratulat SM, Mihai P, Toma AM, Taranu G, Toma IO. Influence of Concrete Strength Class on the Long-Term Static and Dynamic Elastic Moduli of Concrete. Applied Sciences 2021; 11(24): 11671.
  • Zahid MM, Bakar BA, Nazri FM, Ab Rahim MA. A review on raw materials and curing methods applied in production of ultra high performance concrete. In: IOP Conference Series: Materials Science and Engineering 2020; p. 012202.
  • Ferdous W, Manalo A, Van Erp G, Aravinthan T, Kaewunruen S, Remennikov A. Composite railway sleepers–Recent developments, challenges and future prospects. Compos Struct 2015; 134: 158-168.
  • Aktaş B, Cecen F, Öztürk H, Navdar MB, Öztürk İŞ. Comparison of prestressed concrete railway sleepers and new LCR concrete sleepers with experimental modal analysis. Eng Fail Anal 2022; 131: 105821.
  • Lu JX, Shen P, Ali HA, Poon CS. Mix design and performance of lightweight ultra-high-performance concrete. Mater Des 2022; 216: 110553.
  • Liang C, Liu T, Xiao J, Zou D, Yang Q. The damping property of recycled aggregate concrete. Constr Build Mater 2016; 102: 834-842.
  • Tian Y, Shi S, Jia K, Hu S. Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion. Constr Build Mater 2015; 93: 1151-1156.
  • Zeitouni AI, Rizos DC, Qian Y. Benefits of high strength reduced modulus (HSRM) concrete railroad ties under center binding support conditions. Constr Build Mater 2018; 192: 210-223.
  • Giner VT, Baeza FJ, Ivorra S, Zornoza E, Galao Ó. Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater Des 2012; 34: 332-339.
  • Fu X, Chung DD. Vibration damping admixtures for cement. Cem Concr Res 1996; 26(1): 69-75.
  • Meesit R, Kaewunruen S. Vibration characteristics of micro-engineered crumb rubber concrete for railway sleeper applications. J Adv Concr Technol 2017; 15(2): 55-66.
  • Sukontasukkul P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Constr Build Mater 2009; 23(2): 1084-1092.
  • Zhou C, Pei X, Li W, Liu Y. Mechanical and damping properties of recycled aggregate concrete modified with air-entraining agent and polypropylene fiber. Materials 2020; 13(8): 2004.
  • Giner VT, Ivorra S, Baeza FJ, Zornoza E, Ferrer B. Silica fume admixture effect on the dynamic properties of concrete. Constr Build Mater 2011; 25(8): 3272-3277.
  • Warburton GB. The Dynamical Behaviour of Structures. 2nd Edition. New York: PERGAMON PRESS OXFORD, ISBN: 9781483187785, 1976.
  • Swamy N, Rigby G. Dynamic properties of hardened paste, mortar and concrete. Matériaux et construction 1971; 4: 13-40.
  • Salzmann, A. Damping characteristics of reinforced and prestressed normal-and high-strength concrete beams. Griffith University, 2003.
  • Eiras JN, Popovics JS, Borrachero MV, Monzó J, Payá J. The effects of moisture and micro-structural modifications in drying mortars on vibration-based NDT methods. Constr Build Mater 2015; 94: 565-571.
  • Provis JL, Brice DG, Buchwald A, Duxson P, Kavalerova E, Krivenko PV, Wiercx JALM. Demonstration projects and applications in building and civil infrastructure. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM 2014; 309-338.
  • Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani M. Clean production and properties of geopolymer concrete; A review. Cleaner Prod 2020; 251: 119679.
  • Bondar, D. Geo-polymer concrete as a new type of sustainable construction materials. In: Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies (ICSCMT) 2013; 18-21.
  • Guo X, Shi H, Dick WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos 2010; 32(2): 142-147.
  • Khan MZN, Hao Y, Hao H, Shaikh FUA. Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cem Concr Compos 2018; 85: 133-152.
  • Pan Z, Feng KN, Gong K, Zou B, Korayem AH, Sanjayan J, Collins F. Damping and microstructure of fly ash-based geopolymers. J Mater Sci 2013; 48: 3128-3137.
  • Özbayrak A, Kucukgoncu H, Atas O, Aslanbay HH, Aslanbay YG, Altun F. Determination of stress-strain relationship based on alkali activator ratios in geopolymer concretes and development of empirical formulations. Structures 2023; 2048-2061.
  • Cecen F, Özbayrak A, Aktaş B. Experimental modal analysis of fly ash-based geopolymer concrete specimens via modal circles, mode indication functions, and mode shape animations. Cem Concr Compos 2023; 137: 104951.
  • Okoye FN, Durgaprasad J, Singh NB. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 2016; 42(2): 3000-3006.
  • Farooq F, Jin X, Javed MF, Akbar A, Shah MI, Aslam F, Alyousef R. Geopolymer concrete as sustainable material: A state of the art review. Constr. Build. Mater. 2021; 306: 124762.
  • Gupta P, Nagpal G, Gupta N. Fly ash-based geopolymers: an emerging sustainable solution for heavy metal remediation from aqueous medium. Beni-Suef University Journal of Basic and Applied Sciences 2021; 10(1): 89.
  • Temuujin J, Minjigmaa A, Bayarzul U, Kim DS, Lee SH, Lee HJ, MacKenzie KJD. Properties of geopolymer binders prepared from milled pond ash. Materiales de Construccion 2017; 67(328): 134.
  • Acar MC, Şener A, Özbayrak A, Çelik Aİ. Geopolimer Harçlarda Zeolit Katkisinin Etkisİ. Mühendislik Bilimleri ve Tasarım Dergisi 2020; 8(3): 820-832.
  • Bernal SA, Provis JL. Durability of alkali‐activated materials: progress and perspectives. J Am Ceram Soc 2014; 97(4): 997-1008.
  • Adak D, Mandal S. Strength and durability performance of fly ash–based process-modified geopolymer concrete. J Mater Civ Eng 2019; 31(9): 04019174.
  • Özbayrak A, Kucukgoncu H, Aslanbay HH, Aslanbay YG. Atas O. Comprehensive experimental analysis of the effects of elevated temperatures in geopolymer concretes with variable alkali activator ratios, J Build Eng 2023; 68: 106108.
  • Luna-Galiano Y, Fernández-Pereira C, Izquierdo M. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Mater Constr 2016; 66(324): 098.
  • Ma Y, Hu J, Ye G. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash. J Mater Sci 2012; 47: 4568-4578.
  • Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem Concr Res 2002; 32(6): 865-879.
  • Çelik Aİ, Tunç U, Bahrami A, Karalar M, Mydin MAO, Alomayri T, Özkılıç YO. Use of waste glass powder toward more sustainable geopolymer concrete. J Mater Res Technol 2023; 24: 8533-8546.
  • Özkılıç YO, Çelik Aİ, Tunç U, Karalar M, Deifalla A, Alomayri T, Althoey F. The use of crushed recycled glass for alkali activated fly ash based geopolymer concrete and prediction of its capacity. J Mater Res Technol 2023; 24: 8267-8281.
  • Huang W, Wang H. Geopolymer pervious concrete modified with granulated blast furnace slag: Microscale characterization and mechanical strength. J Cleaner Prod 2021; 328: 129469.
  • Xiao R, Ma Y, Jiang X, Zhang M, Zhang Y, Wang Y, He Q. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J Cleaner Prod 2020; 252: 119610.
  • Huo W, Zhu Z, Sun H, Gao Q, Zhang J, Wan Y, Zhang C. Reaction kinetics, mechanical properties, and microstructure of nano-modified recycled concrete fine powder/slag based geopolymers. J Cleaner Prod 2022; 372: 133715.
  • Zhang Y, Xiao R, Jiang X, Li W, Zhu X, Huang B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Cleaner Prod 2020; 273: 122970.
  • Zhang Y, Xiao R, Jiang X, Li W, Zhu X, Huang B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Cleaner Prod 2020; 273: 122970.
  • Han G, Yang S, Peng W, Huang Y, Wu H, Chai W, Liu J. Enhanced recycling and utilization of mullite from coal fly ash with a flotation and metallurgy process. J Cleaner Prod 2018; 178: 804-813.
  • Xu W, Wen X, Wei J, Xu P, Zhang B, Yu Q, Ma H. Feasibility of kaolin tailing sand to be as an environmentally friendly alternative to river sand in construction applications. J Cleaner Prod 2018; 205: 1114-1126.
  • Zhou N, Zhang J, Ouyang S, Deng X, Dong C, Du E. Feasibility study and performance optimization of sand-based cemented paste backfill materials. J Cleaner Prod 2020; 259: 120798.
  • Fernández-Jiménez A, Palomo A, Criado M. Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 2005; 35(6): 1204-1209.
  • Çeçen F, Aktaş B. Modal and harmonic response analysis of new CFRP laminate reinforced concrete railway sleepers. Eng. Fail. Anal. 2021; 127: 105471.
  • Aktaş B, Cecen F, Öztürk H, Navdar MB, Öztürk İŞ. Comparison of prestressed concrete railway sleepers and new LCR concrete sleepers with experimental modal analysis. Eng Fail Anal 2022; 131: 105821.
  • Gjelstrup SL. What is modal analysis: the ultimate guide. DEWESoft, Available: https://dewesoft. com/daq/what-is-modal-analysis. [Accessed 11 06 2022], 2021.
  • Irretier HD. History and development of frequency domain methods in experimental modal analysis. J Phys 2002; 12(11): 11-91.
  • Avitabile P. Modal space-in our own little world. Exp Tech 2013; 37: 4-6.
  • Modal Test and Modal Analysis, https://training.dewesoft.com/online/course/modal-testing-frf#mode-indicator-function-mif, Accessed 14.09.2024
  • Šmilauer V, Hlaváček P, Škvára F, Šulc R, Kopecký L, Němeček J. Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J Mater Sci 2011; 46: 6545-6555.
  • Tian Y, Lu D, Zhou J, Yang Y, Wang Z. Damping property of cement mortar incorporating damping aggregate. Materials 2020; 13(3): 792.
  • Aslanbay YG, Aslanbay HH, Özbayrak A, Kucukgoncu H, Atas O. Comprehensive analysis of experimental and numerical results of bond strength and mechanical properties of fly ash based GPC and OPC concrete. Constr Build Mater 2024; 416: 135175.
There are 64 citations in total.

Details

Primary Language English
Subjects Reinforced Concrete Buildings, Earthquake Engineering
Journal Section MBD
Authors

Ferhat Çeçen 0000-0003-2100-8071

Ahmet Özbayrak 0000-0002-8091-4990

Bekir Aktaş 0000-0003-3072-7983

Project Number 121M236
Publication Date September 30, 2024
Submission Date May 8, 2024
Acceptance Date September 13, 2024
Published in Issue Year 2024

Cite

APA Çeçen, F., Özbayrak, A., & Aktaş, B. (2024). Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 883-901. https://doi.org/10.35234/fumbd.1480600
AMA Çeçen F, Özbayrak A, Aktaş B. Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2024;36(2):883-901. doi:10.35234/fumbd.1480600
Chicago Çeçen, Ferhat, Ahmet Özbayrak, and Bekir Aktaş. “Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-Based Geopolymer Concrete Specimens Using Modal, Mechanical and Microstructural Investigations”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, no. 2 (September 2024): 883-901. https://doi.org/10.35234/fumbd.1480600.
EndNote Çeçen F, Özbayrak A, Aktaş B (September 1, 2024) Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 883–901.
IEEE F. Çeçen, A. Özbayrak, and B. Aktaş, “Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, pp. 883–901, 2024, doi: 10.35234/fumbd.1480600.
ISNAD Çeçen, Ferhat et al. “Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-Based Geopolymer Concrete Specimens Using Modal, Mechanical and Microstructural Investigations”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (September 2024), 883-901. https://doi.org/10.35234/fumbd.1480600.
JAMA Çeçen F, Özbayrak A, Aktaş B. Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:883–901.
MLA Çeçen, Ferhat et al. “Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-Based Geopolymer Concrete Specimens Using Modal, Mechanical and Microstructural Investigations”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, 2024, pp. 883-01, doi:10.35234/fumbd.1480600.
Vancouver Çeçen F, Özbayrak A, Aktaş B. Simultaneously Enhancing the Dynamic Damping and Static Strength Capabilities of Structures: A Case Study Conducted on Fly Ash-based Geopolymer Concrete Specimens using Modal, Mechanical and Microstructural Investigations. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):883-901.