Research Article
BibTex RIS Cite

Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit

Year 2024, , 945 - 955, 30.09.2024
https://doi.org/10.35234/fumbd.1483091

Abstract

Bilim ve teknolojideki hızlı ilerlemeler, nanokompozitlere olan ilgiyi her geçen gün arttırmaktadır. Son yıllarda özellikle karbon temelli nanoyapılar ile iletken polimerin (CP) kombinasyonu ile oluşturulan nanokompozitler malzemeler oldukça dikkat çekmektedir. Her iki malzemenin avantajlarının tek bir çatı altında toplanması, nanokompozitlere çok yönlü işlevsellik kazandırmaktadır. Mevcut çalışma, CP ve indirgenmiş grafen oksit (rGO) arasındaki mükemmel birlikteliğe dayalı yeni bir nanokompozit malzemesinin eldesini içermektedir. Bu kapsamda, ilk olarak, rGO ile modifiye edilen indiyum kalay oksit (İTO) elektrodun üzerinde karbazol bazlı monomerin (PFA-Cz kodlu) elektrokimyasal polimerizasyon yöntemiyle kaplanmasıyla yeni bir rGO/CP hibrit nanokompozit polimer film elde edilmiştir. Bu nanokompozit filmin optik ve elektriksel özellikleri, homopolimer ile karşılaştırmalı olarak incelenmiştir. Nanokompozit film, homopolimerin redoks özellikleri ile rGO’nun iyi elektronik iletkenliğinin birleşimine dayanan ilginç sinerjik özellikler sergilemiştir. Bu kombinasyon, gelişmiş elektriksel ve optik özelliklere sahip nanokompozit malzemeler eldesi için pratik ve rasyonel bir strateji olarak değerlendirilebilir.

Ethical Statement

Etik beyan yoktur.

Supporting Institution

Destekleyen kurum yoktur.

Thanks

Yazar, bu çalışma için Pamukkale Üniversitesi Kimya Bölümü İleri Polimerik Araştırmalar Laboratuvarı’nda (İPAL) gerekli araştırma olanaklarını sağlayan Prof. Dr. Metin AK’a teşekkür eder.

References

  • Sert S, Ayranci R, Çılgı GK, Ak M. Enhancing solar thermal storage properties of azobenzenes with conductive polymer: Electropolymerization of carbazole containing photoactive cyanoazobenzene derivative. J Energy Storage 2023; 72, 108551.
  • Zhou Q, Shi, G. Conducting Polymer-Based Catalysts. J Am Chem Soc 2016, 138, 2868–2876.
  • Ayranci, R, Soganci T, Guzel M, Demirkol DO, Ak M, Timur S. Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. RSC Adv 2015; 5, 52543–52549.
  • Ak, M, Soganci, T. Chapter 10. Electrochemical Properties and Electrochromic Device Applications of Polycarbazole Derivatives. in: Electrochromic Smart Materials: Fabrication and Applications. 2019; 293–322.
  • Bekkar, F, Bettahar F, Moreno I, Meghabar R, Hamadouche M, Hernáez E, Vilas-Vilela JL, Ruiz-Rubio L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers (Basel). 2020; 12, 2227.
  • Guzel M, Ha SR, Choi H, Ak, M. Rational design of an “all-in-one” monomer to obtain black-to-highly transmissive electrochromic polymer. Electrochim Acta 2022; 404, 139761.
  • Soganci T, Baygu Y, Kabay N, Gök Y, Ak M. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties. ACS Appl Mater Interfaces, 2018; 10, 21654–21665.
  • Coban F, Ayranci R, Ak M. Click functionalized naphthalene contained polycarbazole microspheres for use in electrochromic applications. Opt Mater (Amst) 2023; 143, 114205.
  • Cowan SR, Schulz, P, Giordano, AJ, Garcia, A, MacLeod, BA, Marder, SR, Kahn, A., Ginley DS vd. Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole-based Organic Solar Cells. Adv Funct Mater 2014; 24, 4671–4680.
  • Joshi N, Saxena V, Singh A, Koiry SP, Debnath AK, Chehimi MM, Aswal DK, Gupta SK. Flexible H2S sensor based on gold modified polycarbazole films. Sens Actuators, B 2014; 200, 227–234.
  • Almtiri M, Dowell TJ, Giri H, Wipf DO, Scott CN. Electrochemically Stable Carbazole-Derived Polyaniline for Pseudocapacitors. ACS Appl Polym Mater 2022; 4, 3088–3097.
  • Guzel M, Soganci T, Ayranci R, Ak M. Smart windows application of carbazole and triazine based star shaped architecture. Phys Chem Chem Phys 2016; 18, 21659–21667.
  • Zong W, Qiu W, Yuan P, Wang F, Liu Y, Xu S, Su SJ, Cao S. Thermally activated delayed fluorescence polymers for high-efficiency solution-processed non-doped OLEDs: Convenient synthesis by binding TADF units and host units to the pre-synthesized polycarbazole-based backbone via click reaction. Polymer (Guildf) 2022; 240, 124468.
  • Ayranci R, Baskaya G, Guzel M, Bozkurt S, Ak M, Savk A, Sen F. Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect 2017; 2, 1548–1555.
  • Ayranci R, Baskaya G, Güzel M, Bozkurt S, Sen F, Ak M. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Struct Nano-Objects 2017; 11, 13–19.
  • Zhang W, Dehghani-Sanij AA, Blackburn RS. Carbon based conductive polymer composites. J Mater Sci 2007; 42, 3408–3418.
  • Dhandapani E, Thangarasu S, Ramesh S, Ramesh K, Vasudevan R. Duraisamy N. Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — A review. J Energy Storage 2022; 52, 104937.
  • Moyseowicz A, Minta D, Gryglewicz G. Conductive Polymer/Graphene-based Composites for Next Generation Energy Storage and Sensing Applications. ChemElectroChem 2023; 10, e202201145.
  • Lei W, Si W, Xu Y, Gu Z, Hao Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 2014; 181, 707–722.
  • Zhao H, Peng Z, Wang W, Chen X, Fang J, Xu J. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode. J Power Sources 2014; 245, 529–536.
  • Li W, Sim HJ, Lu H, Cao H, Chen Y, Xiao P. Effect of reduced graphene oxide on the mechanical properties of rGO/Al2O3 composites. Ceram Int 2022; 48, 24021–24031.
  • Naghani EM, Neghabi M, Zadsar M, Ahangar AH. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite. Sci Rep 2023; 13, 1496.
  • Kumar NA, Choi HJ, Shin YR, Chang DW, Dai L. Baek JB. Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano 2012; 6, 1715–1723.
  • Li S, Chen Y, He X, Mao X, Zhou Y, Xu J, Yang Y. Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and its Application as Energy Storage Electrodes. Nanoscale Res Lett 2019; 14, 226.
  • Abdillah OB, Rus YB, Ulfa M, Dedi IF. Recent progress on reduced graphene oxide and polypyrrole composites for high performance supercapacitors: A review. J Energy Storage 2023; 74, 109300.
  • Kumar A, Pandey N, Punetha D, Saha R. Chakrabarti, S. Enhancement in the Structural and Optical Properties after Incorporation of Reduced Graphene Oxide (rGO) Nanocomposite in Pristine CsSnBr3 for Solar Cell Application. ACS Appl Electron Mater 2023; 5, 3144–3153.
  • Ates M, Caliskan S, Özten E. Supercapacitor study of reduced graphene oxide/Zn nanoparticle/polycarbazole electrode active materials and equivalent circuit models. J Solid State Electrochem. 2018; 22, 3261–3271.
  • Lei W, Wu Q, Si W, Gu Z, Zhang Y, Deng J, Hao Q. Electrochemical determination of imidacloprid using poly(carbazole)/chemically reduced graphene oxide modified glassy carbon electrode. Sens Actuators, B 2013; 183, 102–109.
  • Srivastava A, Chakrabarti P. Modulation of electronic conductivity and bandgap of electrochemically polymerised polycarbazole films using montmorillonite, multi-walled carbon nanotube and reduced graphene oxide as nanofillers. Micro Nano Lett 2018; 13, 1335–1338.
  • Guzel M, Celik E, Kart SO, Tasli PT, Karatas E, Ak M. Experimental and theoretical investigation of the substitution effects on N-substituted carbazole derivatives functionalized with azomethine bonds. React Funct Polym 2022; 172, 105180.
  • Ayrancı R. Grafen Temelli İletken Polimer-Nanokompozit Elektrodunun Sentezi, Elektrokimyasal ve Optik Özelliklerinin İncelenmesi. Erzincan Üniversitesi Fen Bilim Enstitüsü Derg 2018; 11, 415–424.
  • Clark MD, Leever BJ. Analysis of ITO cleaning protocol on surface properties and polymer: Fullerene bulk heterojunction solar cell performance. Sol Energy Mater Sol Cells 2013; 116, 270–274.
  • Kabay N, Güzel M, Ayranci R, Baygu Y, Ak M, Gök Y. Synthesis, electropolymerization, and optoelectronic properties of carbazole containing imidazolium based ionic liquid. Synth Met 2024; 301, 117529.
  • Soğancı T. Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. Düzce Üniversitesi Bilim ve Teknol Derg 2019; 7, 922–934.

A Practical and Rational Strategy for Improved Optical and Electrical Properties: Reduced Graphene Oxide/Polycarbazole Based Hybrid Nanocomposite

Year 2024, , 945 - 955, 30.09.2024
https://doi.org/10.35234/fumbd.1483091

Abstract

Rapid advances in science and technology increase the interest in nanocomposites day by day. In recent years, nanocomposite materials formed by the combination of carbon-based nanostructures and conductive polymer (CP) have attracted considerable attention. The combination of the advantages of both materials under one roof provides versatile functionality to nanocomposites. The present study includes the preparation of a new nanocomposite material based on the excellent association between CP and reduced graphene oxide (rGO). In this context, firstly, a new rGO/CP hybrid nanocomposite polymer film was obtained by coating carbazole-based monomer (coded PFA-Cz) on the indium tin oxide (ITO) electrode modified with rGO by electrochemical polymerization method. The optical and electrical properties of this nanocomposite film were investigated comparatively with the homopolymer. The nanocomposite film exhibited interesting synergistic properties based on the combination of the redox properties of the homopolymer with the good electronic conductivity of rGO. This combination can be considered as a practical and rational strategy for obtaining nanocomposite materials with improved electrical and optical properties.

References

  • Sert S, Ayranci R, Çılgı GK, Ak M. Enhancing solar thermal storage properties of azobenzenes with conductive polymer: Electropolymerization of carbazole containing photoactive cyanoazobenzene derivative. J Energy Storage 2023; 72, 108551.
  • Zhou Q, Shi, G. Conducting Polymer-Based Catalysts. J Am Chem Soc 2016, 138, 2868–2876.
  • Ayranci, R, Soganci T, Guzel M, Demirkol DO, Ak M, Timur S. Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. RSC Adv 2015; 5, 52543–52549.
  • Ak, M, Soganci, T. Chapter 10. Electrochemical Properties and Electrochromic Device Applications of Polycarbazole Derivatives. in: Electrochromic Smart Materials: Fabrication and Applications. 2019; 293–322.
  • Bekkar, F, Bettahar F, Moreno I, Meghabar R, Hamadouche M, Hernáez E, Vilas-Vilela JL, Ruiz-Rubio L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers (Basel). 2020; 12, 2227.
  • Guzel M, Ha SR, Choi H, Ak, M. Rational design of an “all-in-one” monomer to obtain black-to-highly transmissive electrochromic polymer. Electrochim Acta 2022; 404, 139761.
  • Soganci T, Baygu Y, Kabay N, Gök Y, Ak M. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties. ACS Appl Mater Interfaces, 2018; 10, 21654–21665.
  • Coban F, Ayranci R, Ak M. Click functionalized naphthalene contained polycarbazole microspheres for use in electrochromic applications. Opt Mater (Amst) 2023; 143, 114205.
  • Cowan SR, Schulz, P, Giordano, AJ, Garcia, A, MacLeod, BA, Marder, SR, Kahn, A., Ginley DS vd. Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole-based Organic Solar Cells. Adv Funct Mater 2014; 24, 4671–4680.
  • Joshi N, Saxena V, Singh A, Koiry SP, Debnath AK, Chehimi MM, Aswal DK, Gupta SK. Flexible H2S sensor based on gold modified polycarbazole films. Sens Actuators, B 2014; 200, 227–234.
  • Almtiri M, Dowell TJ, Giri H, Wipf DO, Scott CN. Electrochemically Stable Carbazole-Derived Polyaniline for Pseudocapacitors. ACS Appl Polym Mater 2022; 4, 3088–3097.
  • Guzel M, Soganci T, Ayranci R, Ak M. Smart windows application of carbazole and triazine based star shaped architecture. Phys Chem Chem Phys 2016; 18, 21659–21667.
  • Zong W, Qiu W, Yuan P, Wang F, Liu Y, Xu S, Su SJ, Cao S. Thermally activated delayed fluorescence polymers for high-efficiency solution-processed non-doped OLEDs: Convenient synthesis by binding TADF units and host units to the pre-synthesized polycarbazole-based backbone via click reaction. Polymer (Guildf) 2022; 240, 124468.
  • Ayranci R, Baskaya G, Guzel M, Bozkurt S, Ak M, Savk A, Sen F. Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect 2017; 2, 1548–1555.
  • Ayranci R, Baskaya G, Güzel M, Bozkurt S, Sen F, Ak M. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Struct Nano-Objects 2017; 11, 13–19.
  • Zhang W, Dehghani-Sanij AA, Blackburn RS. Carbon based conductive polymer composites. J Mater Sci 2007; 42, 3408–3418.
  • Dhandapani E, Thangarasu S, Ramesh S, Ramesh K, Vasudevan R. Duraisamy N. Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — A review. J Energy Storage 2022; 52, 104937.
  • Moyseowicz A, Minta D, Gryglewicz G. Conductive Polymer/Graphene-based Composites for Next Generation Energy Storage and Sensing Applications. ChemElectroChem 2023; 10, e202201145.
  • Lei W, Si W, Xu Y, Gu Z, Hao Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 2014; 181, 707–722.
  • Zhao H, Peng Z, Wang W, Chen X, Fang J, Xu J. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode. J Power Sources 2014; 245, 529–536.
  • Li W, Sim HJ, Lu H, Cao H, Chen Y, Xiao P. Effect of reduced graphene oxide on the mechanical properties of rGO/Al2O3 composites. Ceram Int 2022; 48, 24021–24031.
  • Naghani EM, Neghabi M, Zadsar M, Ahangar AH. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite. Sci Rep 2023; 13, 1496.
  • Kumar NA, Choi HJ, Shin YR, Chang DW, Dai L. Baek JB. Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano 2012; 6, 1715–1723.
  • Li S, Chen Y, He X, Mao X, Zhou Y, Xu J, Yang Y. Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and its Application as Energy Storage Electrodes. Nanoscale Res Lett 2019; 14, 226.
  • Abdillah OB, Rus YB, Ulfa M, Dedi IF. Recent progress on reduced graphene oxide and polypyrrole composites for high performance supercapacitors: A review. J Energy Storage 2023; 74, 109300.
  • Kumar A, Pandey N, Punetha D, Saha R. Chakrabarti, S. Enhancement in the Structural and Optical Properties after Incorporation of Reduced Graphene Oxide (rGO) Nanocomposite in Pristine CsSnBr3 for Solar Cell Application. ACS Appl Electron Mater 2023; 5, 3144–3153.
  • Ates M, Caliskan S, Özten E. Supercapacitor study of reduced graphene oxide/Zn nanoparticle/polycarbazole electrode active materials and equivalent circuit models. J Solid State Electrochem. 2018; 22, 3261–3271.
  • Lei W, Wu Q, Si W, Gu Z, Zhang Y, Deng J, Hao Q. Electrochemical determination of imidacloprid using poly(carbazole)/chemically reduced graphene oxide modified glassy carbon electrode. Sens Actuators, B 2013; 183, 102–109.
  • Srivastava A, Chakrabarti P. Modulation of electronic conductivity and bandgap of electrochemically polymerised polycarbazole films using montmorillonite, multi-walled carbon nanotube and reduced graphene oxide as nanofillers. Micro Nano Lett 2018; 13, 1335–1338.
  • Guzel M, Celik E, Kart SO, Tasli PT, Karatas E, Ak M. Experimental and theoretical investigation of the substitution effects on N-substituted carbazole derivatives functionalized with azomethine bonds. React Funct Polym 2022; 172, 105180.
  • Ayrancı R. Grafen Temelli İletken Polimer-Nanokompozit Elektrodunun Sentezi, Elektrokimyasal ve Optik Özelliklerinin İncelenmesi. Erzincan Üniversitesi Fen Bilim Enstitüsü Derg 2018; 11, 415–424.
  • Clark MD, Leever BJ. Analysis of ITO cleaning protocol on surface properties and polymer: Fullerene bulk heterojunction solar cell performance. Sol Energy Mater Sol Cells 2013; 116, 270–274.
  • Kabay N, Güzel M, Ayranci R, Baygu Y, Ak M, Gök Y. Synthesis, electropolymerization, and optoelectronic properties of carbazole containing imidazolium based ionic liquid. Synth Met 2024; 301, 117529.
  • Soğancı T. Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. Düzce Üniversitesi Bilim ve Teknol Derg 2019; 7, 922–934.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Polymer Science and Technologies, Polymer Technologies
Journal Section MBD
Authors

Merve Güzel 0000-0002-0603-3933

Publication Date September 30, 2024
Submission Date May 13, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024

Cite

APA Güzel, M. (2024). Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 945-955. https://doi.org/10.35234/fumbd.1483091
AMA Güzel M. Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2024;36(2):945-955. doi:10.35234/fumbd.1483091
Chicago Güzel, Merve. “Gelişmiş Optik Ve Elektriksel Özellikler İçin Pratik Ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, no. 2 (September 2024): 945-55. https://doi.org/10.35234/fumbd.1483091.
EndNote Güzel M (September 1, 2024) Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 945–955.
IEEE M. Güzel, “Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, pp. 945–955, 2024, doi: 10.35234/fumbd.1483091.
ISNAD Güzel, Merve. “Gelişmiş Optik Ve Elektriksel Özellikler İçin Pratik Ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (September 2024), 945-955. https://doi.org/10.35234/fumbd.1483091.
JAMA Güzel M. Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:945–955.
MLA Güzel, Merve. “Gelişmiş Optik Ve Elektriksel Özellikler İçin Pratik Ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, 2024, pp. 945-5, doi:10.35234/fumbd.1483091.
Vancouver Güzel M. Gelişmiş Optik ve Elektriksel Özellikler İçin Pratik ve Rasyonel Bir Strateji: İndirgenmiş Grafen Oksit/ Polikarbazol Bazlı Hibrit Nanokompozit. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):945-5.