Research Article
BibTex RIS Cite

DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ

Year 2021, , 455 - 470, 15.09.2021
https://doi.org/10.35234/fumbd.863749

Abstract

Çoklu görüde nesne takibi, birden fazla görüntüleme aygıtının kullanıldığı görüntüleme sistemlerinde tek bir görüntüleme aygıtından elde edilen görüntü kareleri üzerinde tespit edilen nesnelerin diğer görüntüleme aygıtlarından gelen görüntü kareleri üzerinde de bulunduğu yerin hesaplanmasına dayalı nesne takip işlemidir. Burada bahsi geçen problemin çözümü için genelde görüntüleme sistemi içerisinde bulunan farklı kamera konum ve oryantasyonların içerisinde kullanıldığı hesaplama metotlarından yararlanılmaktadır. Makine öğrenmesi ve yapay zeka tabanlı yöntemlerin bilgisayarlı görü alanında problemlerin çözme kabiliyetinin artmasıyla beraber ÇGNT işlemini gerçekleştirmek için farklı yapay zeka ve makine öğrenmesi tabanlı yöntemlerden yararlanılabilmektedir. Bu çalışmada ÇGNT için bulanık bilişsel haritalardan yararlanan yeni bir yöntem geliştirilmiştir. Bulanık bilişsel haritalar, ele aldığı gerçek dünya sistem veya problemlerine ait özellikleri konsept olarak kabul eder ve bu konseptler arasındaki ilişkileri kullanarak iteratif bir şekilde modelleme veya hesaplama işlemini geçekleştiren graf tabanlı yapılardır. Günümüzde endüstri, sağlık, enerji, bilgisayar bilimi vs. gibi birçok alanda problemlerin çözümünde BBH’lar kullanılmaktadır. Bulanık bilişsel haritaların literatürde bilgisayar bilimi alanında sağladığı çözüm önerileri için daha dinamik bir yapıya ihtiyaç duyulmuştur. Bu çalışmada çoklu görüde nesne takibi işlemi için geliştirdiğimiz bulanık bilişsel harita yapısında konsept ilişkilerinin dinamik bir şekilde güncellenmesi için derin yapay sinir ağlarından yararlanılmıştır. Deneysel sonuçların analizi farklı başarım hesaplama işlemleriyle gerçekleştirilmiştir. ÇGNT odaklı yöntemlerin başarım hesaplamasında kullanılan Birleşim Kesişimi (Intersection of Union) yöntemi ile yapılan analizlerde minimum %67,4 maksimum %99,8 ve ortalama %88,2 başarım elde edildiği gözlemlenmiştir. Ele alınan problem için hesaplanan kesişim oranı literatür çalışmaları incelendiğinde çok yüksek bir başarıma sahiptir.

References

  • [1] Chen W, Cao L, Huang K. A novel solution for multi-camera object tracking. 2014 IEEE International Conference on Image Processing (ICIP); 2014; pp. 2329-2333.
  • [2] Jahanshahi P, Masoud A, Moghadam E. Multi-view tracking using Kalman filter and graph cut. 2015 AI & Robotics (IRANOPEN);2015; Qazvin. pp. 1-5.
  • [3] Yun Y, Gu I, Aghajan H. Maximum-likelihood object tracking from multi-view video by combining homography and epipolar constraints. 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC); 2012; Hong Kong. pp. 1-6.
  • [4] Chen Z, Liao W, Xu B, Liu H, Li Q, Li H, Yang D. Object Tracking over a Multiple-Camera Network. 2015 IEEE International Conference on Multimedia Big Data; 2015; Beijing. pp. 276-279.
  • [5] He L, Liu G, Tian G, Zhang, J, Ji, Z. Efficient Multi-View Multi-Target Tracking Using a Distributed Camera Network. IEEE Sensors Journal; 2020; vol 20; no 4: pp. 2056-2063.
  • [6] Qian Y, Yu L, Liu W, Hauptmann A. ELECTRICITY: An Efficient Multi-camera Vehicle Tracking System for Intelligent City. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Seattle; 2020. pp.2511-2519.
  • [7] Chou Y S, Wang C Y, Chen M C, Lin S D, Liao H Y M. Dynamic Gallery for Real-Time Multi-Target Multi-Camera Tracking. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS); Taipei, Taiwan; 2019. pp.1-8.
  • [8] Ong J, Vo B T, Vo B N, Kim D Y, Nordholm S. A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020.
  • [9] Zhang X, Izquierdo E. Real-Time Multi-Target Multi-Camera Tracking with Spatial-Temporal Information. 2019 IEEE Visual Communications and Image Processing (VCIP); Sydney; Australia; 2019. Pp. 1-4.
  • [10] Liu X, Dong Y, Deng Z. Deep Highway Multi-Camera Vehicle Re-ID with Tracking Context. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC); 2020; Chıngqing; China. pp. 2090-2093.
  • [11] Zhou W, Li Z, Gao P. Research on Moving Object Detection and Matching Technology in Multi-Angle Monitoring Video. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC); 2019; ; Chıngqing; China. pp. 741-744.
  • [12] Del Rosario J R B, Bandala A A, Dadios E P. Multi-view multi-object tracking in an intelligent transportation system: A literature review. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM); 2017; Manila. pp. 1-4.
  • [13] Gozhyj A, Kalinina I, Gozhyj V. Fuzzy cognitive analysis and modeling of water quality. In Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2017; Bucharest. pp. 289-293.
  • [14] Pajares G, Jesús M. Fuzzy cognitive maps for stereovision matching. Pattern Recognition; 2007; 39(11). pp.2101-2114.
  • [15] Chen CT, Chiu YT. A study of fuzzy cognitive map model with dynamic adjustment method for the interaction weights, 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE); 2016; Tainan. Pp.699-702.
  • [16] Miao Y. Modelling dynamic causal relationship in fuzzy cognitive maps. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); 2014; Beijing. pp.1013-1020.
  • [17] Mazzuto G, Ciarapica FE, Stylios C, Georgopoulos VC. Fuzzy Cognitive Maps designing through large dataset and experts’ knowledge balancing. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); Rio de Janeiro; 2018. pp.1-6.
  • [18] Bhutani K, Kumar M. Fuzzy inference system & fuzzy cognitive maps based classification. 2015 International Conference on Advances in Computer Engineering and Applications; 2015. pp.305-309.
  • [19] Georgopoulos VC, Stylios CD. Fuzzy cognitive maps for decision making in triage of non-critical elderly patients. 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS);2018;Okinawa. Pp. 225-228.
  • [20] Poczeta K, Kubus L, Yastrebov A. Analysis of an evolutionary algorithm for complex fuzzy cognitive map learning based on graph theory metrics and output concepts. Biosystems;179;2019. Pp.39-47.
  • [21] Altundoğan TG. Derin öğrenme kullanan dinamik bulanık bilişsel haritalar ile gerçek zamanlı nesne takibi. Yüksek Lisans Tezi. Fırat Üniversitesi, Elazığ, 2019.
  • [22] Altundogan TG, Karakose M. A New Deep Neural Network Based Dynamic Fuzzy Cognitive Map Weight Updating Approach. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP);2019;Malatya, pp. 1-6.
  • [23] Altundogan TG, Karakose M. Multiple Object Tracking with Dynamic Fuzzy Cognitive Maps Using Deep Learning. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP);2019;Malatya, pp. 1-5.
  • [24] Altundogan TG, Karakose M. Genetic Algorithm Based Fuzzy Cognitive Map Concept Relationship Determination and Sigmoid Configuration. In 2020 IEEE International Symposium on Systems Engineering (ISSE);2020; Vienna pp. 1-5.
  • [25] Altundoğan, TG, Karaköse M. An Approach for Online Weight Update Using Particle Swarm Optimization in Dynamic Fuzzy Cognitive Maps. In 2018 3rd International Conference on Computer Science and Engineering (UBMK); 2018; Sarajevo (pp. 1-5). IEEE.
Year 2021, , 455 - 470, 15.09.2021
https://doi.org/10.35234/fumbd.863749

Abstract

References

  • [1] Chen W, Cao L, Huang K. A novel solution for multi-camera object tracking. 2014 IEEE International Conference on Image Processing (ICIP); 2014; pp. 2329-2333.
  • [2] Jahanshahi P, Masoud A, Moghadam E. Multi-view tracking using Kalman filter and graph cut. 2015 AI & Robotics (IRANOPEN);2015; Qazvin. pp. 1-5.
  • [3] Yun Y, Gu I, Aghajan H. Maximum-likelihood object tracking from multi-view video by combining homography and epipolar constraints. 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC); 2012; Hong Kong. pp. 1-6.
  • [4] Chen Z, Liao W, Xu B, Liu H, Li Q, Li H, Yang D. Object Tracking over a Multiple-Camera Network. 2015 IEEE International Conference on Multimedia Big Data; 2015; Beijing. pp. 276-279.
  • [5] He L, Liu G, Tian G, Zhang, J, Ji, Z. Efficient Multi-View Multi-Target Tracking Using a Distributed Camera Network. IEEE Sensors Journal; 2020; vol 20; no 4: pp. 2056-2063.
  • [6] Qian Y, Yu L, Liu W, Hauptmann A. ELECTRICITY: An Efficient Multi-camera Vehicle Tracking System for Intelligent City. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Seattle; 2020. pp.2511-2519.
  • [7] Chou Y S, Wang C Y, Chen M C, Lin S D, Liao H Y M. Dynamic Gallery for Real-Time Multi-Target Multi-Camera Tracking. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS); Taipei, Taiwan; 2019. pp.1-8.
  • [8] Ong J, Vo B T, Vo B N, Kim D Y, Nordholm S. A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020.
  • [9] Zhang X, Izquierdo E. Real-Time Multi-Target Multi-Camera Tracking with Spatial-Temporal Information. 2019 IEEE Visual Communications and Image Processing (VCIP); Sydney; Australia; 2019. Pp. 1-4.
  • [10] Liu X, Dong Y, Deng Z. Deep Highway Multi-Camera Vehicle Re-ID with Tracking Context. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC); 2020; Chıngqing; China. pp. 2090-2093.
  • [11] Zhou W, Li Z, Gao P. Research on Moving Object Detection and Matching Technology in Multi-Angle Monitoring Video. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC); 2019; ; Chıngqing; China. pp. 741-744.
  • [12] Del Rosario J R B, Bandala A A, Dadios E P. Multi-view multi-object tracking in an intelligent transportation system: A literature review. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM); 2017; Manila. pp. 1-4.
  • [13] Gozhyj A, Kalinina I, Gozhyj V. Fuzzy cognitive analysis and modeling of water quality. In Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2017; Bucharest. pp. 289-293.
  • [14] Pajares G, Jesús M. Fuzzy cognitive maps for stereovision matching. Pattern Recognition; 2007; 39(11). pp.2101-2114.
  • [15] Chen CT, Chiu YT. A study of fuzzy cognitive map model with dynamic adjustment method for the interaction weights, 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE); 2016; Tainan. Pp.699-702.
  • [16] Miao Y. Modelling dynamic causal relationship in fuzzy cognitive maps. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); 2014; Beijing. pp.1013-1020.
  • [17] Mazzuto G, Ciarapica FE, Stylios C, Georgopoulos VC. Fuzzy Cognitive Maps designing through large dataset and experts’ knowledge balancing. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); Rio de Janeiro; 2018. pp.1-6.
  • [18] Bhutani K, Kumar M. Fuzzy inference system & fuzzy cognitive maps based classification. 2015 International Conference on Advances in Computer Engineering and Applications; 2015. pp.305-309.
  • [19] Georgopoulos VC, Stylios CD. Fuzzy cognitive maps for decision making in triage of non-critical elderly patients. 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS);2018;Okinawa. Pp. 225-228.
  • [20] Poczeta K, Kubus L, Yastrebov A. Analysis of an evolutionary algorithm for complex fuzzy cognitive map learning based on graph theory metrics and output concepts. Biosystems;179;2019. Pp.39-47.
  • [21] Altundoğan TG. Derin öğrenme kullanan dinamik bulanık bilişsel haritalar ile gerçek zamanlı nesne takibi. Yüksek Lisans Tezi. Fırat Üniversitesi, Elazığ, 2019.
  • [22] Altundogan TG, Karakose M. A New Deep Neural Network Based Dynamic Fuzzy Cognitive Map Weight Updating Approach. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP);2019;Malatya, pp. 1-6.
  • [23] Altundogan TG, Karakose M. Multiple Object Tracking with Dynamic Fuzzy Cognitive Maps Using Deep Learning. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP);2019;Malatya, pp. 1-5.
  • [24] Altundogan TG, Karakose M. Genetic Algorithm Based Fuzzy Cognitive Map Concept Relationship Determination and Sigmoid Configuration. In 2020 IEEE International Symposium on Systems Engineering (ISSE);2020; Vienna pp. 1-5.
  • [25] Altundoğan, TG, Karaköse M. An Approach for Online Weight Update Using Particle Swarm Optimization in Dynamic Fuzzy Cognitive Maps. In 2018 3rd International Conference on Computer Science and Engineering (UBMK); 2018; Sarajevo (pp. 1-5). IEEE.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Turan Göktuğ Altundoğan 0000-0002-8677-3105

Mehmet Karaköse 0000-0002-3276-3788

Publication Date September 15, 2021
Submission Date January 19, 2021
Published in Issue Year 2021

Cite

APA Altundoğan, T. G., & Karaköse, M. (2021). DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 455-470. https://doi.org/10.35234/fumbd.863749
AMA Altundoğan TG, Karaköse M. DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2021;33(2):455-470. doi:10.35234/fumbd.863749
Chicago Altundoğan, Turan Göktuğ, and Mehmet Karaköse. “DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, no. 2 (September 2021): 455-70. https://doi.org/10.35234/fumbd.863749.
EndNote Altundoğan TG, Karaköse M (September 1, 2021) DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33 2 455–470.
IEEE T. G. Altundoğan and M. Karaköse, “DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, pp. 455–470, 2021, doi: 10.35234/fumbd.863749.
ISNAD Altundoğan, Turan Göktuğ - Karaköse, Mehmet. “DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/2 (September 2021), 455-470. https://doi.org/10.35234/fumbd.863749.
JAMA Altundoğan TG, Karaköse M. DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:455–470.
MLA Altundoğan, Turan Göktuğ and Mehmet Karaköse. “DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, 2021, pp. 455-70, doi:10.35234/fumbd.863749.
Vancouver Altundoğan TG, Karaköse M. DERİN YAPAY SİNİR AĞLARI KULLANAN DİNAMİK BULANIK BİLİŞSEL HARİTALARLA ÇOKLU GÖRÜDE NESNE TAKİBİ. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33(2):455-70.