Zatürre Hastalığının Derin Öğrenme Modeli ile Tespiti
Yıl 2019,
Cilt: 31 Sayı: 1, 223 - 230, 15.03.2019
Mesut Toğaçar
,
Burhan Ergen
,
Mehmet Emre Sertkaya
Öz
Zatürre Hastalığı, insanın hayatının herhangi
bir döneminde karşılaşabileceği hastalıklardan biridir. Enfeksiyon hastalıklarının yaklaşık %18’ini zatürre hastalığı
oluşturmaktadır. Bu hastalık ilerleyen bazı durumlarda ölüme sebep
olabilmektedir. Tıbbi olarak zatürre teşhisini kesin olarak konulabilmesi için
akciğer röntgen görüntülerinin bir doktor tarafından incelenmesi gereklidir. Bu çalışmada, zatürre hastalığının teşhisi için geliştirilen tanıma
sistemi için erişime açık olan akciğer röntgen görüntülerinden
faydalanılmıştır. Elde edilen imge kümesinde
öznitelik çıkarımı için derin öğrenme modellerinden evrişimsel sini ağı kullanılmıştır.
Hastalığın teşhisi için elde edilen öznitelikler farklı sınıflandırıcılar
kullanılarak başarım karşılaştırmaları yapılmıştır. Karşılaştırma sonucunda
sınıflandırma işleminde kullanılan, destek vektör makineleri ile % 95.8 gibi
bir yüksek başarı oranı elde edilmiştir. Zatürre gibi ölümcül hastalıkların
erken teşhisinde, derin öğrenme modellerinin daha hızlı ve doğru sonuçlar verdiği
bu çalışmada izlenmiştir. Yapılan bu çalışma, evrişimsel sinir ağı ile özellik
çıkarmanın biyomedikal alanındaki mevcut yöntemlere kıyasla zaman ve performans
açısından daha iyi sonuçlar verdiğini sonucuna varılmıştır.
Kaynakça
- J. Zhang, Y. Xia, Y. Xie, M. Fulham, and D. Feng, “Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. 2, pp. 1–10, 2017.
- S. Koitka and C. M. Friedrich, “Traditional feature engineering and deep learning approaches at medical classification task of imageCLEF 2016,” CEUR Workshop Proc., vol. 1609, pp. 304–317, 2016.
- D. Ravi, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G. Z. Yang, “Deep Learning for Health Informatics,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 1, pp. 4–21, 2017.
- M. Bakator and D. Radosav, “Deep Learning and Medical Diagnosis: A Review of Literature,” Multimodal Technol. Interact., vol. 2, no. 3, p. 47, 2018.
- McLuckie, A. (editor), Respiratory disease and its management., New York, Springer, p. 51, ISBN 978-1-84882-094-4, 2009.
- Osler, William (1901). Principles and Practice of Medicine, 4th Edition. New York: D. Appleton and Company. s. 108.
- Jeffrey C. Pommerville (2010) . Alcamo' s Fundamentals of Microbiology (9. bas.). Sudbury MA: Jones & Bartlett. s. 323. ISBN 0-7637-6258-X.
- “Chest X-Ray Images (Pneumonia) | Kaggle .” [Online]. Available: https ://www.kaggle.com/ paultimothymooney /chest-xray-pneumonia/data. [Accessed: 25-Nov-2018].
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012.
- J. Nagi and F. Ducatelle, “Max - pooling convolutional neural networks for vision-based hand gesture recognition,” 2011 IEEE Int. Conf. Signal Image Process. Appl., pp. 342–347, 2011.
- M. D. Zeiler and R. Fergus, “ Visualizing and Understanding Convolutional Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” Comput. Vision–ECCV 2014, vol. 8689, pp. 818–833, 2014.
- S. Gu, L. Ding, Y. Yang, and X. Chen, “A New Deep Learning Method Based on AlexNet Model and SSD Model for Tennis Ball Recognition,” pp. 159–164, 2017.
- C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07–12–June, pp. 1–9, 2015.
- J. Shlens, “Shlens2006_PCATutorial,” Measurement, pp. 1–13, 2005.
- Er, O., Yumusak, N., Temurtas, F., “Diagnosis of chest diseases using artificial immune system”, Expert Systems with Applications, 39., 1862–1868, 2012.
- Global Strategy for the Diagnosis, Management, and Prevention of Choronic Obstructive Pulmonary Disease, Global Initiative For Chronic Obstructive Lung Disease (GOLD) Inc., 2015.
- “Pneumonia – Diagnosis - using- XRays” [Online]. Available:https://github.com/fr407041/ Pneumonia-Diagnosis-using- XRays/ . [Accessed: 26-Nov-2018].
Detection of Pneumonia with Deep Learning Model
Yıl 2019,
Cilt: 31 Sayı: 1, 223 - 230, 15.03.2019
Mesut Toğaçar
,
Burhan Ergen
,
Mehmet Emre Sertkaya
Öz
Recently, rapid developments in image processing have gained different
perspective in deep learning models. Deep learning models continue to
contribute to the areas of human health. Pneumonia is one of the diseases that
people may encounter in any period of their lives. Pneumonia accounts for about
18% of infectious diseases. In some cases, this disease can cause death. In
this study, lung x-ray images were used for the diagnosis of pneumonia. The ESA
from deep learning models was used for feature extraction in the resulting
image set. The results of CNN with different classifiers were compared. As a
result of the comparison, a success rate of approximately 95.8% was obtained
with support vector machines. In the early diagnosis of deadly diseases such as
pneumonia, deep learning models were found to be faster and more accurate. This
study has shown that feature extraction with CNN provides better results in
terms of time and performance than current methods in biomedical field.
Kaynakça
- J. Zhang, Y. Xia, Y. Xie, M. Fulham, and D. Feng, “Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. 2, pp. 1–10, 2017.
- S. Koitka and C. M. Friedrich, “Traditional feature engineering and deep learning approaches at medical classification task of imageCLEF 2016,” CEUR Workshop Proc., vol. 1609, pp. 304–317, 2016.
- D. Ravi, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G. Z. Yang, “Deep Learning for Health Informatics,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 1, pp. 4–21, 2017.
- M. Bakator and D. Radosav, “Deep Learning and Medical Diagnosis: A Review of Literature,” Multimodal Technol. Interact., vol. 2, no. 3, p. 47, 2018.
- McLuckie, A. (editor), Respiratory disease and its management., New York, Springer, p. 51, ISBN 978-1-84882-094-4, 2009.
- Osler, William (1901). Principles and Practice of Medicine, 4th Edition. New York: D. Appleton and Company. s. 108.
- Jeffrey C. Pommerville (2010) . Alcamo' s Fundamentals of Microbiology (9. bas.). Sudbury MA: Jones & Bartlett. s. 323. ISBN 0-7637-6258-X.
- “Chest X-Ray Images (Pneumonia) | Kaggle .” [Online]. Available: https ://www.kaggle.com/ paultimothymooney /chest-xray-pneumonia/data. [Accessed: 25-Nov-2018].
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012.
- J. Nagi and F. Ducatelle, “Max - pooling convolutional neural networks for vision-based hand gesture recognition,” 2011 IEEE Int. Conf. Signal Image Process. Appl., pp. 342–347, 2011.
- M. D. Zeiler and R. Fergus, “ Visualizing and Understanding Convolutional Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” Comput. Vision–ECCV 2014, vol. 8689, pp. 818–833, 2014.
- S. Gu, L. Ding, Y. Yang, and X. Chen, “A New Deep Learning Method Based on AlexNet Model and SSD Model for Tennis Ball Recognition,” pp. 159–164, 2017.
- C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07–12–June, pp. 1–9, 2015.
- J. Shlens, “Shlens2006_PCATutorial,” Measurement, pp. 1–13, 2005.
- Er, O., Yumusak, N., Temurtas, F., “Diagnosis of chest diseases using artificial immune system”, Expert Systems with Applications, 39., 1862–1868, 2012.
- Global Strategy for the Diagnosis, Management, and Prevention of Choronic Obstructive Pulmonary Disease, Global Initiative For Chronic Obstructive Lung Disease (GOLD) Inc., 2015.
- “Pneumonia – Diagnosis - using- XRays” [Online]. Available:https://github.com/fr407041/ Pneumonia-Diagnosis-using- XRays/ . [Accessed: 26-Nov-2018].