Research Article
BibTex RIS Cite

Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması

Year 2019, Volume: 31 Issue: 2, 319 - 326, 27.09.2019
https://doi.org/10.35234/fumbd.613295

Abstract

Bu çalışmada, grafen kaplı nikel-titanyum (NiTi) alaşımı üretilerek mikrobiyal yakıt hücresinde (MYH) anot elektrotu olarak kullanılmıştır. Çalışmada çift bölmeli bir MYH reaktörü sürekli modda işletilmiş ve elektrik üretim performansı detaylı bir şekilde araştırılmıştır. MYH reaktörünün ürettiği maksimum güç yoğunluğu 2043 mW/m2 olarak elde edilmiştir. Sistemin toplam iç direnci 437.7 W olarak ölçülmüştür. İşletme süresi sonunda anot elektrotu yüzeyinden alınan SEM görüntülerinde biyofilm yapısında genellikle yuvarlak şekilli mikroorganizmaların mevcut olduğu tespit edilmiştir. Biyofilm numunesine uygulanan PCR-DGGE analizleri elektrot yüzeyinde Shewanella oneidensis ve Pseudomonas aeruginosa gibi elektrik üretiminde etkin mikrobiyal türlerin mevcut olduğunu göstermiştir.

References

  • [1] Logan BE. (2008). Microbial fuel cells. ed. John Wiley & Sons[2] Taskan E, Hasar H. Comprehensive Comparison of a New Tin-Coated Copper Mesh and a Graphite Plate Electrode as an Anode Material in Microbial Fuel Cell. Appl. Biochem. Biotechnol 2015; 175(4): 2300-2308.[3] Li S, Cheng C, Thomas A. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Adv. Mater 2017; 29(8): 1602547.[4] Toker SM, Canadinc D, Maier HJ, Birer O. Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency. Mater. Sci. Eng., C 2014; 36(118-129.[5] Akdoğan A, Nurveren K. Akıllı Malzemeler ve Uygulamaları. Machinery MakinaTek 2002; 57 s 35): [6] Hou J, Liu Z, Li Y, Yang S, Zhou Y. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs. Bioprocess Biosyst Eng 2015; 38(5): 881-888.[7] Hsu W-H, Tsai H-Y, Huang Y-C. Characteristics of Carbon Nanotubes/Graphene Coatings on Stainless Steel Meshes Used as Electrodes for Air-Cathode Microbial Fuel Cells. J Nanomater 2017; 2017([8] Xiao L, Damien J, Luo J, Jang HD, Huang J, He Z. Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 2012; 208(187-192.[9] Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 2011; 196(13): 5402-5407.[10] Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T, Zhao F, Schröder U, Hou H. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015; 284(252-257.[11] Yamashita T, Yokoyama H. Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol Biofuels 2018; 11(1): 39.[12] Zeng L, Zhao S, He M. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J. Power Sources 2018; 376(33-40.[13] Rikame SS, Mungray AA, Mungray AK. Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim. Acta 2018; 275(8-17.[14] Cheng P, Shan R, Yuan H-R, Deng L-f, Chen Y. Enhanced Rhodococcus pyridinivorans HR-1 anode performance by adding trehalose lipid in microbial fuel cell. Bioresour Technol 2018; 267(774-777.[15] Wang K, Cheng Y, Chen Y, Jin X, Chen Z. Green reduced graphene oxide electrodes by eucalyptus leaves extract to enhance the power generation of microbial fuel cells (MFC). Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae 2017; 37(8): 2944-2950.[16] Yousefi V, Mohebbi-Kalhori D, Samimi A, Salari M. Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs). Int. J. Hydrogen Energy 2016; 41(1): 597-606.[17] El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA. Electrical transport along bacterial nanowires from <em>Shewanella oneidensis</em> MR-1. Proc Natl Acad Sci 2010; 107(42): 18127-18131.[18] Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 2008; 80(6): 985-993.[19] Commault AS, Lear G, Packer MA, Weld RJ. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells. Bioresour Technol 2013; 139(226-234.[20] Narayanasamy S, Jayaprakash J. Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation. Chem. Eng. J 2018; 343(258-269.[21] Wang J, Song X, Wang Y, Bai J, Bai H, Yan D, Cao Y, Li Y, Yu Z, Dong G. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresour Technol 2017; 245(372-378.[22] Sawasdee V, Pisutpaisal N. Microbial Community from Tannery Wastewater in Microbial Fuel Cell. Chemical Engineering Transactions 2018; 64(397-402.[23] Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 2009; 7(5): 375.[24] Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002; 295(5554): 483-485.[25] Lee J, Phung NT, Chang IS, Kim BH, Sung HC. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 2003; 223(2): 185-191.[26] Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. Microbial Communities Associated with Electrodes Harvesting Electricity from a Variety of Aquatic Sediments. Microb Ecol 2004; 48(2): 178-190.[27] Thung W-E, Ong S-A, Ho L-N, Wong Y-S, Ridwan F, Oon Y-L, Oon Y-S, Lehl HK. Bioelectricity Generation in Batch-Fed Up-Flow Membrane-Less Microbial Fuel Cell: Effect of Surface Morphology of Carbon Materials as Aqeuous Biocathodes. Water, Air, Soil Pollut 2016; 227(8): 254.[28] Tao Y, Liu Q, Chen J, Wang B, Wang Y, Liu K, Li M, Jiang H, Lu Z, Wang D. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode. Environ. Sci. Technol 2016; 50(14): 7889-7895.[29] You J, Santoro C, Greenman J, Melhuish C, Cristiani P, Li B, Ieropoulos I. Micro-porous layer (MPL)-based anode for microbial fuel cells. Int. J. Hydrogen Energy 2014; 39(36): 21811-21818.[30] Cheng Y, Mallavarapu M, Naidu R, Chen Z. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Chemosphere 2018; 193(618-624.
Year 2019, Volume: 31 Issue: 2, 319 - 326, 27.09.2019
https://doi.org/10.35234/fumbd.613295

Abstract

References

  • [1] Logan BE. (2008). Microbial fuel cells. ed. John Wiley & Sons[2] Taskan E, Hasar H. Comprehensive Comparison of a New Tin-Coated Copper Mesh and a Graphite Plate Electrode as an Anode Material in Microbial Fuel Cell. Appl. Biochem. Biotechnol 2015; 175(4): 2300-2308.[3] Li S, Cheng C, Thomas A. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Adv. Mater 2017; 29(8): 1602547.[4] Toker SM, Canadinc D, Maier HJ, Birer O. Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency. Mater. Sci. Eng., C 2014; 36(118-129.[5] Akdoğan A, Nurveren K. Akıllı Malzemeler ve Uygulamaları. Machinery MakinaTek 2002; 57 s 35): [6] Hou J, Liu Z, Li Y, Yang S, Zhou Y. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs. Bioprocess Biosyst Eng 2015; 38(5): 881-888.[7] Hsu W-H, Tsai H-Y, Huang Y-C. Characteristics of Carbon Nanotubes/Graphene Coatings on Stainless Steel Meshes Used as Electrodes for Air-Cathode Microbial Fuel Cells. J Nanomater 2017; 2017([8] Xiao L, Damien J, Luo J, Jang HD, Huang J, He Z. Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 2012; 208(187-192.[9] Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 2011; 196(13): 5402-5407.[10] Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T, Zhao F, Schröder U, Hou H. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015; 284(252-257.[11] Yamashita T, Yokoyama H. Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol Biofuels 2018; 11(1): 39.[12] Zeng L, Zhao S, He M. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J. Power Sources 2018; 376(33-40.[13] Rikame SS, Mungray AA, Mungray AK. Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim. Acta 2018; 275(8-17.[14] Cheng P, Shan R, Yuan H-R, Deng L-f, Chen Y. Enhanced Rhodococcus pyridinivorans HR-1 anode performance by adding trehalose lipid in microbial fuel cell. Bioresour Technol 2018; 267(774-777.[15] Wang K, Cheng Y, Chen Y, Jin X, Chen Z. Green reduced graphene oxide electrodes by eucalyptus leaves extract to enhance the power generation of microbial fuel cells (MFC). Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae 2017; 37(8): 2944-2950.[16] Yousefi V, Mohebbi-Kalhori D, Samimi A, Salari M. Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs). Int. J. Hydrogen Energy 2016; 41(1): 597-606.[17] El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA. Electrical transport along bacterial nanowires from <em>Shewanella oneidensis</em> MR-1. Proc Natl Acad Sci 2010; 107(42): 18127-18131.[18] Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 2008; 80(6): 985-993.[19] Commault AS, Lear G, Packer MA, Weld RJ. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells. Bioresour Technol 2013; 139(226-234.[20] Narayanasamy S, Jayaprakash J. Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation. Chem. Eng. J 2018; 343(258-269.[21] Wang J, Song X, Wang Y, Bai J, Bai H, Yan D, Cao Y, Li Y, Yu Z, Dong G. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresour Technol 2017; 245(372-378.[22] Sawasdee V, Pisutpaisal N. Microbial Community from Tannery Wastewater in Microbial Fuel Cell. Chemical Engineering Transactions 2018; 64(397-402.[23] Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 2009; 7(5): 375.[24] Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002; 295(5554): 483-485.[25] Lee J, Phung NT, Chang IS, Kim BH, Sung HC. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 2003; 223(2): 185-191.[26] Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. Microbial Communities Associated with Electrodes Harvesting Electricity from a Variety of Aquatic Sediments. Microb Ecol 2004; 48(2): 178-190.[27] Thung W-E, Ong S-A, Ho L-N, Wong Y-S, Ridwan F, Oon Y-L, Oon Y-S, Lehl HK. Bioelectricity Generation in Batch-Fed Up-Flow Membrane-Less Microbial Fuel Cell: Effect of Surface Morphology of Carbon Materials as Aqeuous Biocathodes. Water, Air, Soil Pollut 2016; 227(8): 254.[28] Tao Y, Liu Q, Chen J, Wang B, Wang Y, Liu K, Li M, Jiang H, Lu Z, Wang D. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode. Environ. Sci. Technol 2016; 50(14): 7889-7895.[29] You J, Santoro C, Greenman J, Melhuish C, Cristiani P, Li B, Ieropoulos I. Micro-porous layer (MPL)-based anode for microbial fuel cells. Int. J. Hydrogen Energy 2014; 39(36): 21811-21818.[30] Cheng Y, Mallavarapu M, Naidu R, Chen Z. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Chemosphere 2018; 193(618-624.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Ergin Taşkan 0000-0002-9620-8644

Selman Bulak This is me 0000-0001-7751-1165

Banu Taşkan This is me 0000-0002-4243-7169

Merivan Şaşmaz 0000-0003-3075-7891

Engin Gürtekin 0000-0003-3075-7891

Ali Bayri 0000-0002-8197-1604

Publication Date September 27, 2019
Submission Date October 3, 2018
Published in Issue Year 2019 Volume: 31 Issue: 2

Cite

APA Taşkan, E., Bulak, S., Taşkan, B., Şaşmaz, M., et al. (2019). Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 319-326. https://doi.org/10.35234/fumbd.613295
AMA Taşkan E, Bulak S, Taşkan B, Şaşmaz M, Gürtekin E, Bayri A. Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2019;31(2):319-326. doi:10.35234/fumbd.613295
Chicago Taşkan, Ergin, Selman Bulak, Banu Taşkan, Merivan Şaşmaz, Engin Gürtekin, and Ali Bayri. “Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 2 (September 2019): 319-26. https://doi.org/10.35234/fumbd.613295.
EndNote Taşkan E, Bulak S, Taşkan B, Şaşmaz M, Gürtekin E, Bayri A (September 1, 2019) Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31 2 319–326.
IEEE E. Taşkan, S. Bulak, B. Taşkan, M. Şaşmaz, E. Gürtekin, and A. Bayri, “Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 2, pp. 319–326, 2019, doi: 10.35234/fumbd.613295.
ISNAD Taşkan, Ergin et al. “Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31/2 (September 2019), 319-326. https://doi.org/10.35234/fumbd.613295.
JAMA Taşkan E, Bulak S, Taşkan B, Şaşmaz M, Gürtekin E, Bayri A. Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2019;31:319–326.
MLA Taşkan, Ergin et al. “Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 2, 2019, pp. 319-26, doi:10.35234/fumbd.613295.
Vancouver Taşkan E, Bulak S, Taşkan B, Şaşmaz M, Gürtekin E, Bayri A. Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2019;31(2):319-26.