Sabit Zaman Gecikmeli Tek Serbestlik Dereceli Bir Haptik-Teleoperasyon Sisteminin Kontrolü
Year 2021,
Volume: 33 Issue: 1, 133 - 140, 15.02.2021
Tayfun Abut
,
Servet Soygüder
Abstract
Haptik-teleoperasyon sistemlerinin performansının arttırılması amacıyla çeşitli çalışmalar yürütülmektedir. Haptik-teleoperasyon sistemlerinde iki temel unsur hedeflenmektedir. Birinci kararlılık(stability) ikincisi ise şeffaflık(transparency)’dır. Özellikle kararlılığı, şeffaflığı bozan ve performansı etkileyen en önemli problemlerden biri zaman gecikmesidir. Zaman gecikmesi haptik teleoperasyon sistemlerinin performansını oldukça kötü etkilemektedir. Bu çalışmada tek serbestlik dereceli robotlardan oluşan haptik-teleoperasyon sisteminin sabit zaman gecikmeli kontrolü hedeflenmiştir. Öncelikle sistemi oluşturan robotların hareket denklemleri elde edilmiştir. Dalga değişken yöntemi(Wave Variables Method) kullanılarak sabit zaman gecikmesi telafi edilmiştir.200,400 ve 800 milisaniye zaman gecikmesinin varlığında sistem kontrol edilmiştir. Elde edilen sonuçlar iki farklı performans kriterleri (MAE ve MSE) kullanılarak elde edilmiş ve tablolar şeklinde verilmiştir. Sonuçlar grafikler ve tablolar şeklinde verilmiş ve irdelenmiştir.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Thanks
Bu çalışma Tayfun ABUT ’un doktora tez konusudur ve 2211 / C Yurtiçi Öncelikli Doktora Burs Programı kapsamında Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir.
References
- [1] Zilles, C. B., Salisbury, J. K. constraint-based god-object method for haptic display. In: Proceedings 1995 ieee/rsj international conference on intelligent robots and systems. Human robot interaction and cooperative robots. IEEE, 1995. p. 146-151.
- [2] Lederman, S. J.,Klatzky, R. L. Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 2009, 71.7: 1439-1459.
- [3] Black, D. G., Hosseinabadi, A. H. H., Salcudean, S. E. 6-DOF Force Sensing for the Master Tool Manipulator of the da Vinci Surgical System. IEEE Robotics and Automation Letters, 2020, 5.2: 2264-2271.
- [4] Abut, T., Soyguder, S., Haptic industrial robot control and bilateral teleoperation by using a virtual visual interface. 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018. p. 1-4.
- [5] Lee, D., Franchi, A., Son, H. I., Ha, C., Bülthoff, H. H., Giordano, P. R. Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME Transactions on Mechatronics, 2013, 18.4: 1334-1345.
- [6] Ferrell, W. R. Delayed force feedback. Human factors, 1966, 8.5: 449-455.
- [7] Anderson, R. J., Spong, M. W., Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic control, 1989, 34.5: 494-501.
- [8] Niemeyer, G.; Slotine, J.-JE. Stable adaptive teleoperation. IEEE Journal of oceanic engineering, 1991, 16.1: 152-162.
- [9] Munir, S.,Book, W. J. Internet based teleoperation using wave variables with prediction. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No. 01TH8556). IEEE, 2001. p. 43-50.
- [10] Chopra, N., Spong, M. W., Ortega, R., Barabanov, N. EOn tracking performance in bilateral teleoperation. IEEE Transactions on Robotics, 2006, 22.4: 861-866.
- [11] Hirche, S., Ferre, M., Barrio, J., Melchiorri, C., Buss, M.Bilateral control architectures for telerobotics. In: Advances in Telerobotics. Springer, Berlin, Heidelberg, 2007. p. 163-176.
- [12] Diolaiti, N., Niemeyer, G., & Tanner, N. A. Wave haptics: Building stiff controllers from the natural motor dynamics. The International Journal of Robotics Research, 2007, 26.1: 5-21.
- [13] Rodriguez-Seda, E. J., Lee, D.,Spong, M. W. Experimental comparison study of control architectures for bilateral teleoperators. IEEE Transactions on robotics, 2009, 25.6: 1304-1318
- [14] Benedetti, C., Franchini, M.,Fiorini, P. Stable tracking in variable time-delay teleoperation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180). IEEE, 2001. p. 2252-2257.
- [15] Aziminejad, A., Tavakoli, M., Patel, R. V., Moallem, M. Stability and performance in delayed bilateral teleoperation: Theory and experiments. Control Engineering Practice, 2008, 16.11: 1329-1343.
- [16] Bate, L., Cook, C. D.,Li, Z. Reducing wave-based teleoperator reflections for unknown environments. IEEE Transactions on Industrial Electronics, 2009, 58.2: 392-397.
- [17] Li, H.,Kawashima, K. Experimental comparison of backdrivability for time-delayed telerobotics. Control Engineering Practice, 2014, 28: 90-96.
- [18] Soyguder, S., Abut, T. Haptic industrial robot control with variable time delayed bilateral teleoperation. Industrial Robot: An International Journal, 2016, vol. 43, no. 4, pp. 390–402.
- [19] Sun, D., Naghdy, F.,Du, H. Wave-variable-based passivity control of four-channel nonlinear bilateral teleoperation system under time delays. IEEE/ASME transactions on mechatronics, 2015, 21.1: 238-253.
- [20] Chen, Z., Huang, F., Sun, W.,Song, W. An improved wave-variable based four-channel control design in bilateral teleoperation system for time-delay compensation. IEEE Access, 2018, 6: 12848-12857.
- [21] Guo, J., Liu, C., Poignet, P. A scaled bilateral teleoperation system for robotic-assisted surgery with time delay. Journal of Intelligent & Robotic Systems, 2019, 95.1: 165-192.
- [22] Abut, T., Soyguder, S., Zaman Gecikmeli İnsan-Makine Etkileşimli Teleoperasyon Sisteminin Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 2018, 30.1: 193-202.
- [23] Luo, J., Liu, C., Wang, N., Yang, C. A wave variable approach with multiple channel architecture for teleoperated system. IEEE Access, 2019, 7: 143912-143920.
Year 2021,
Volume: 33 Issue: 1, 133 - 140, 15.02.2021
Tayfun Abut
,
Servet Soygüder
References
- [1] Zilles, C. B., Salisbury, J. K. constraint-based god-object method for haptic display. In: Proceedings 1995 ieee/rsj international conference on intelligent robots and systems. Human robot interaction and cooperative robots. IEEE, 1995. p. 146-151.
- [2] Lederman, S. J.,Klatzky, R. L. Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 2009, 71.7: 1439-1459.
- [3] Black, D. G., Hosseinabadi, A. H. H., Salcudean, S. E. 6-DOF Force Sensing for the Master Tool Manipulator of the da Vinci Surgical System. IEEE Robotics and Automation Letters, 2020, 5.2: 2264-2271.
- [4] Abut, T., Soyguder, S., Haptic industrial robot control and bilateral teleoperation by using a virtual visual interface. 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018. p. 1-4.
- [5] Lee, D., Franchi, A., Son, H. I., Ha, C., Bülthoff, H. H., Giordano, P. R. Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME Transactions on Mechatronics, 2013, 18.4: 1334-1345.
- [6] Ferrell, W. R. Delayed force feedback. Human factors, 1966, 8.5: 449-455.
- [7] Anderson, R. J., Spong, M. W., Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic control, 1989, 34.5: 494-501.
- [8] Niemeyer, G.; Slotine, J.-JE. Stable adaptive teleoperation. IEEE Journal of oceanic engineering, 1991, 16.1: 152-162.
- [9] Munir, S.,Book, W. J. Internet based teleoperation using wave variables with prediction. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No. 01TH8556). IEEE, 2001. p. 43-50.
- [10] Chopra, N., Spong, M. W., Ortega, R., Barabanov, N. EOn tracking performance in bilateral teleoperation. IEEE Transactions on Robotics, 2006, 22.4: 861-866.
- [11] Hirche, S., Ferre, M., Barrio, J., Melchiorri, C., Buss, M.Bilateral control architectures for telerobotics. In: Advances in Telerobotics. Springer, Berlin, Heidelberg, 2007. p. 163-176.
- [12] Diolaiti, N., Niemeyer, G., & Tanner, N. A. Wave haptics: Building stiff controllers from the natural motor dynamics. The International Journal of Robotics Research, 2007, 26.1: 5-21.
- [13] Rodriguez-Seda, E. J., Lee, D.,Spong, M. W. Experimental comparison study of control architectures for bilateral teleoperators. IEEE Transactions on robotics, 2009, 25.6: 1304-1318
- [14] Benedetti, C., Franchini, M.,Fiorini, P. Stable tracking in variable time-delay teleoperation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180). IEEE, 2001. p. 2252-2257.
- [15] Aziminejad, A., Tavakoli, M., Patel, R. V., Moallem, M. Stability and performance in delayed bilateral teleoperation: Theory and experiments. Control Engineering Practice, 2008, 16.11: 1329-1343.
- [16] Bate, L., Cook, C. D.,Li, Z. Reducing wave-based teleoperator reflections for unknown environments. IEEE Transactions on Industrial Electronics, 2009, 58.2: 392-397.
- [17] Li, H.,Kawashima, K. Experimental comparison of backdrivability for time-delayed telerobotics. Control Engineering Practice, 2014, 28: 90-96.
- [18] Soyguder, S., Abut, T. Haptic industrial robot control with variable time delayed bilateral teleoperation. Industrial Robot: An International Journal, 2016, vol. 43, no. 4, pp. 390–402.
- [19] Sun, D., Naghdy, F.,Du, H. Wave-variable-based passivity control of four-channel nonlinear bilateral teleoperation system under time delays. IEEE/ASME transactions on mechatronics, 2015, 21.1: 238-253.
- [20] Chen, Z., Huang, F., Sun, W.,Song, W. An improved wave-variable based four-channel control design in bilateral teleoperation system for time-delay compensation. IEEE Access, 2018, 6: 12848-12857.
- [21] Guo, J., Liu, C., Poignet, P. A scaled bilateral teleoperation system for robotic-assisted surgery with time delay. Journal of Intelligent & Robotic Systems, 2019, 95.1: 165-192.
- [22] Abut, T., Soyguder, S., Zaman Gecikmeli İnsan-Makine Etkileşimli Teleoperasyon Sisteminin Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 2018, 30.1: 193-202.
- [23] Luo, J., Liu, C., Wang, N., Yang, C. A wave variable approach with multiple channel architecture for teleoperated system. IEEE Access, 2019, 7: 143912-143920.