Research Article
BibTex RIS Cite

Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi

Year 2021, Volume: 33 Issue: 1, 275 - 282, 15.02.2021
https://doi.org/10.35234/fumbd.795276

Abstract

Fe elementinin faz diyagramı incelendiğinde erime sıcaklığının altında farklı sıcaklıklarda farklı kristal yapılara sahip olduğu görülmektedir. Bu çalışmada 4000 atomdan oluşan Fe model sisteminde farklı sıcaklıklarda meydana gelen katı-katı faz dönüşümleri moleküler dinamik benzetim yöntemi kullanılarak incelenmeye çalışıldı. Çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu atomlar arasındaki etkileşmeleri hesaplamak için kullanıldı. Fe elementi için erime sıcaklığının altında oluşan α, γ ve δ fazları ve bu fazlar için dönüşüm sıcaklıkları belirlenerek sonuçlar deneysel değerlerle karşılaştırıldı

References

  • [1] Cemal Engin, Herbert M. Urbassek, Molecular-dynamics investigation of the fcc-bcc phase transformation in Fe, Computational Materials Science, 2008; 41: 297–304.
  • [2] Wolfgang Weissavach, Malzeme Bilgisi ve Mayenesi, Birsen Yayın evi. 5. Baskı, İstanbul, 2009.
  • [3] S.Karewar, J.Sietsma, M.J.Santofimia, Effect of pre-existing defects in the parent fcc phase on atomistic mechanisms during the martensitic transformation in pure Fe: A molecular dynamics study, Acta Materialia 2018; Vol.142: 71-81.
  • [4] S.B.Singh, Mechanisms of bainite transformation in steels, Phase Transformations in Steels, 2012; Vol 1: 385-416.
  • [5] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992.
  • [6] W. Pepperhoff, M. Acet, Constitution and Magnetism of Iron and its Alloys, Springer, Berlin, 2001.
  • [7] E. Pereloma, D.V. Edmonds (Eds.), Phase Transformations in Steels, vol. 2, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing Limited, Cambridge, UK, 2012.
  • [8] K.R.K. Gandhi, R.M. Singru, Appl. Phys. A, 1982; 28: 119.
  • [9] B.R. Cuenya, M. Doi, S. Löbus, R. Courths, W. Keune, Surf. Sci., 2001; 493: 338.
  • [10] P. Haasen, Physikalische Metallkunde, 3rd ed., Springer, 1994.
  • [11] P. Entel, R. Meyer, K. Kadau, H.C. Herper, E. Hoffmann, Eur. Phys. J. B, 1998; 5: 279.
  • [12] D.A. Porter, K.E. Easterling Phase transformations in metals and alloys (2nd ed.), Chapman & Hall, London (1992).
  • [13] W. Pepperhoff, M. Acet, Constitution and magnetism of iron and its alloys Springer, Berlin (2001).
  • [14] E. Pereloma, D.V. Edmonds (Eds.), Phase transformations in steels, Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, vol. 2, Woodhead Publishing Limited, Cambridge (2012)
  • [15] B. Lee, J. Shim, M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B, 2003; 68B: 144112.
  • [16] E. Asadi, M. Asle Zaeem, S. Nouranian, M.I. Baskes, Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales, Phys. Rev. B - Condens, Matter Mater. Phys., 2015; 91: 1–13.
  • [17] J.E. Angelo, N.R. Moody, M.I. Baskes, Trapping of hydrogen to lattice defects in nickel, Model. Simul. Mater. Sci. Eng., 1995; 3: 289–307.
  • [18] B.-J. Lee, M.I. Baskes, Second nearest-neighbor modified embedded-atom-method potential, Phys. Rev. B, 2000; 62: 8564–8567.
  • [19] B.-J. Lee, M.I. Baskes, H. Kim, Y. Koo Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B, 2001; 64: 184102.
  • [20] S. Alireza Etesami, Ebrahim Asadi, Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method, Journal of Physics and Chemistry of Solids, 2018; 112: 61–72.
  • [21] H. Chamati ,N.I. Papanicolaou b, Y. Mishin c, D.A. Papaconstantopoulos, Embedded-atom potential for Fe and its application to self-diffusion on Fe(100), Surface Science, 2006; 600: 1793–1803.
  • [22] M. I. Mendelev, S.Han, D. J. Srolovitz, G. J. Ackland, D.Y. Sun and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philosophical Magazine, 2003; Vol. 83, No. 35: 3977–3994.
  • [23] Cagin, T., Dereli, G., Uludogan, M., and Tomak, M.. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 1999; 59(4): 3468-3472.
  • [24] Zhang, X.J., and Chen, C.L.. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 2012; 169: 40-50.
  • [25] Tolpin, K.A., Bachurin, V.I., and Yurasova, V.E.. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 2012; 273: 76-79.
  • [26] Louail, L., Maouche, D., Roumili, A., and Hachemi, A.. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 2005; 91: 17-20.
  • [27] Daw, M.S., Hatcher, R.D.. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 1985; 56: 697-699.
  • [28] Voter, A.F., Chen, S.P.. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 1987; 82: 175.
  • [29] Finnis M.W., and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 1984; 50: 45-55.
  • [30] Sutton, A.P., Chen, J.. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 1990; 61: 139-146.
  • [31] Parrinello, M., and Rahman, A.. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 1980; 45: 1196-1201.
  • [32] Parrinello M., and Rahman, A.. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981; 52: 7182-7190.
  • [33] http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:10.09.2020).
  • [34] M. Rigby, E.B. Smith, W.A. Wakeham and G.C. Maitland, The forces between molecular, published by Oxford University Press, Clarendon Press, 144, New York 1986.
  • [35] G. J. Ackland and A. P. Jones, Applications of local crystal structure measures in experiment and simulation, Physical Review B, 2006; 73: 054104.
  • [36] M. Karimi, G. Stapay, T. Kaplan, M. Mostoller, Modelling Simul. Mater. Sci. Eng., 1997; 5: 337.
Year 2021, Volume: 33 Issue: 1, 275 - 282, 15.02.2021
https://doi.org/10.35234/fumbd.795276

Abstract

References

  • [1] Cemal Engin, Herbert M. Urbassek, Molecular-dynamics investigation of the fcc-bcc phase transformation in Fe, Computational Materials Science, 2008; 41: 297–304.
  • [2] Wolfgang Weissavach, Malzeme Bilgisi ve Mayenesi, Birsen Yayın evi. 5. Baskı, İstanbul, 2009.
  • [3] S.Karewar, J.Sietsma, M.J.Santofimia, Effect of pre-existing defects in the parent fcc phase on atomistic mechanisms during the martensitic transformation in pure Fe: A molecular dynamics study, Acta Materialia 2018; Vol.142: 71-81.
  • [4] S.B.Singh, Mechanisms of bainite transformation in steels, Phase Transformations in Steels, 2012; Vol 1: 385-416.
  • [5] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992.
  • [6] W. Pepperhoff, M. Acet, Constitution and Magnetism of Iron and its Alloys, Springer, Berlin, 2001.
  • [7] E. Pereloma, D.V. Edmonds (Eds.), Phase Transformations in Steels, vol. 2, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing Limited, Cambridge, UK, 2012.
  • [8] K.R.K. Gandhi, R.M. Singru, Appl. Phys. A, 1982; 28: 119.
  • [9] B.R. Cuenya, M. Doi, S. Löbus, R. Courths, W. Keune, Surf. Sci., 2001; 493: 338.
  • [10] P. Haasen, Physikalische Metallkunde, 3rd ed., Springer, 1994.
  • [11] P. Entel, R. Meyer, K. Kadau, H.C. Herper, E. Hoffmann, Eur. Phys. J. B, 1998; 5: 279.
  • [12] D.A. Porter, K.E. Easterling Phase transformations in metals and alloys (2nd ed.), Chapman & Hall, London (1992).
  • [13] W. Pepperhoff, M. Acet, Constitution and magnetism of iron and its alloys Springer, Berlin (2001).
  • [14] E. Pereloma, D.V. Edmonds (Eds.), Phase transformations in steels, Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, vol. 2, Woodhead Publishing Limited, Cambridge (2012)
  • [15] B. Lee, J. Shim, M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B, 2003; 68B: 144112.
  • [16] E. Asadi, M. Asle Zaeem, S. Nouranian, M.I. Baskes, Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales, Phys. Rev. B - Condens, Matter Mater. Phys., 2015; 91: 1–13.
  • [17] J.E. Angelo, N.R. Moody, M.I. Baskes, Trapping of hydrogen to lattice defects in nickel, Model. Simul. Mater. Sci. Eng., 1995; 3: 289–307.
  • [18] B.-J. Lee, M.I. Baskes, Second nearest-neighbor modified embedded-atom-method potential, Phys. Rev. B, 2000; 62: 8564–8567.
  • [19] B.-J. Lee, M.I. Baskes, H. Kim, Y. Koo Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B, 2001; 64: 184102.
  • [20] S. Alireza Etesami, Ebrahim Asadi, Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method, Journal of Physics and Chemistry of Solids, 2018; 112: 61–72.
  • [21] H. Chamati ,N.I. Papanicolaou b, Y. Mishin c, D.A. Papaconstantopoulos, Embedded-atom potential for Fe and its application to self-diffusion on Fe(100), Surface Science, 2006; 600: 1793–1803.
  • [22] M. I. Mendelev, S.Han, D. J. Srolovitz, G. J. Ackland, D.Y. Sun and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philosophical Magazine, 2003; Vol. 83, No. 35: 3977–3994.
  • [23] Cagin, T., Dereli, G., Uludogan, M., and Tomak, M.. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 1999; 59(4): 3468-3472.
  • [24] Zhang, X.J., and Chen, C.L.. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 2012; 169: 40-50.
  • [25] Tolpin, K.A., Bachurin, V.I., and Yurasova, V.E.. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 2012; 273: 76-79.
  • [26] Louail, L., Maouche, D., Roumili, A., and Hachemi, A.. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 2005; 91: 17-20.
  • [27] Daw, M.S., Hatcher, R.D.. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 1985; 56: 697-699.
  • [28] Voter, A.F., Chen, S.P.. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 1987; 82: 175.
  • [29] Finnis M.W., and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 1984; 50: 45-55.
  • [30] Sutton, A.P., Chen, J.. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 1990; 61: 139-146.
  • [31] Parrinello, M., and Rahman, A.. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 1980; 45: 1196-1201.
  • [32] Parrinello M., and Rahman, A.. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981; 52: 7182-7190.
  • [33] http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:10.09.2020).
  • [34] M. Rigby, E.B. Smith, W.A. Wakeham and G.C. Maitland, The forces between molecular, published by Oxford University Press, Clarendon Press, 144, New York 1986.
  • [35] G. J. Ackland and A. P. Jones, Applications of local crystal structure measures in experiment and simulation, Physical Review B, 2006; 73: 054104.
  • [36] M. Karimi, G. Stapay, T. Kaplan, M. Mostoller, Modelling Simul. Mater. Sci. Eng., 1997; 5: 337.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Sefa Kazanç 0000-0002-8896-8571

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date February 15, 2021
Submission Date September 15, 2020
Published in Issue Year 2021 Volume: 33 Issue: 1

Cite

APA Kazanç, S., & Aksu Canbay, C. (2021). Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(1), 275-282. https://doi.org/10.35234/fumbd.795276
AMA Kazanç S, Aksu Canbay C. Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. February 2021;33(1):275-282. doi:10.35234/fumbd.795276
Chicago Kazanç, Sefa, and Canan Aksu Canbay. “Fe Elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi Ile İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, no. 1 (February 2021): 275-82. https://doi.org/10.35234/fumbd.795276.
EndNote Kazanç S, Aksu Canbay C (February 1, 2021) Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33 1 275–282.
IEEE S. Kazanç and C. Aksu Canbay, “Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 1, pp. 275–282, 2021, doi: 10.35234/fumbd.795276.
ISNAD Kazanç, Sefa - Aksu Canbay, Canan. “Fe Elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi Ile İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/1 (February 2021), 275-282. https://doi.org/10.35234/fumbd.795276.
JAMA Kazanç S, Aksu Canbay C. Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:275–282.
MLA Kazanç, Sefa and Canan Aksu Canbay. “Fe Elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi Ile İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 1, 2021, pp. 275-82, doi:10.35234/fumbd.795276.
Vancouver Kazanç S, Aksu Canbay C. Fe elementindeki αγδ Katı-Katı Faz Geçişlerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33(1):275-82.