Research Article
BibTex RIS Cite
Year 2023, Volume: 35 Issue: 1, 275 - 281, 28.03.2023
https://doi.org/10.35234/fumbd.1216284

Abstract

References

  • F. Houdellier, A. Masseboeuf, M. Monthioux et al., “New carbon cone nanotip for use in a highly coherent cold field emission electron microscope,” Carbon, vol. 50, no. 5, pp. 2037-2044, 2012.
  • M. Jung, D. Kim, and S. Choi, “Fabrication of sub-10nm Si-tip array coated with Si3N4 thin film for potential NSOM and liquid metal ion source applications,” Microelectronic engineering, vol. 53, no. 1-4, pp. 399-402, 2000.
  • M. d. Rezeq, and C. Joachim, “Nanotip Technology for Scanning Probe Microscopy Chapter,” Scanning Probe Microscopy, pp. 1, 2010.
  • C. Striemer, and P. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Applied physics letters, vol. 81, no. 16, pp. 2980-2982, 2002.
  • F. Ponce, and D. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” nature, vol. 386, no. 6623, pp. 351-359, 1997.
  • S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
  • A. Folch, M. S. Wrighton, and M. A. Schmidt, “Microfabrication of oxidation-sharpened silicon tips on silicon nitride cantilevers for atomic force microscopy,” Journal of microelectromechanical systems, vol. 6, no. 4, pp. 303-306, 1997.
  • I. Rangelow, “Sharp silicon tips for AFM and field emission,” Microelectronic Engineering, vol. 23, no. 1-4, pp. 369-372, 1994.
  • I. H. Kara, “Wear Behavior of Hot Rolled AZ31B and AZ31B-Nd-La Mg Alloys Tested at Different Angles to Rolling Direction,” Journal of Materials Engineering and Performance, vol. 31, no. 6, pp. 4925-4933, 2022.
  • K. E. Bean, “Anisotropic etching of silicon,” IEEE Transactions on electron devices, vol. 25, no. 10, pp. 1185-1193, 1978.
  • O. Tabata, R. Asahi, H. Funabashi et al., “Anisotropic etching of silicon in TMAH solutions,” Sensors and Actuators A: Physical, vol. 34, no. 1, pp. 51-57, 1992.
  • A. Boisen, O. Hansen, and S. Bouwstra, “AFM probes with directly fabricated tips,” Journal of Micromechanics and Microengineering, vol. 6, no. 1, pp. 58, 1996.
  • L. Li, X. Han, W. Wu et al., "Fabrication of novel cantilever with nanotip for AFM applications." pp. 2383-2386.
  • J. Han, X. Li, H. Bao et al., “AFM probes fabricated with masked–maskless combined anisotropic etching and p+ surface doping,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 198, 2005.
  • D. Resnik, D. Vrtacnik, U. Aljancic et al., “Different aspect ratio pyramidal tips obtained by wet etching of (100) and (111) silicon,” Microelectronics journal, vol. 34, no. 5-8, pp. 591-593, 2003.
  • M. Shikida, K.-i. Nanbara, T. Koizumi et al., “A model explaining mask-corner undercut phenomena in anisotropic silicon etching: a saddle point in the etching-rate diagram,” Sensors and Actuators A: Physical, vol. 97, pp. 758-763, 2002.
  • P. Pal, “Some novel processes and techniques for MEMS design, fabrication and characterization,” 2004.
  • K. Biswas, and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectronics journal, vol. 37, no. 6, pp. 519-525, 2006.
  • C. K. Kang, S. M. Lee, I. D. Jung et al., “The fabrication of patternable silicon nanotips using deep reactive ion etching,” Journal of Micromechanics and Microengineering, vol. 18, no. 7, pp. 075007, 2008.
  • Y. Wang, L. Zhu, Y. Zhang et al., “Silicon nanotips formed by self-assembled Au nanoparticle mask,” Journal of Nanoparticle Research, vol. 12, pp. 1821-1828, 2010.
  • P. Pal, and K. Sato, “Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes,” Microsystem technologies, vol. 16, pp. 1165-1174, 2010.
  • B. Tang, K. Sato, and M. A. Gosálvez, “Sharp silicon tips with different aspect ratios in wet etching/DRIE and surfactant-modified TMAH etching,” Sensors and Actuators A: Physical, vol. 188, pp. 220-229, 2012.

Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu

Year 2023, Volume: 35 Issue: 1, 275 - 281, 28.03.2023
https://doi.org/10.35234/fumbd.1216284

Abstract

Nano iğnelerin üretimi, yüksek performanslı çok işlevli nano cihazların geliştirilmesinde artan endüstriyel taleplerden dolayı ilgi çekmektedir. Nano ölçekli uçlar kontrollü transdermal ilaç salımı, soğuk katot alan emisyonu, taramalı uç mikroskobu, yansıma önleyici kaplama ve nanoindentasyon uygulamalarında yaygın olarak kullanılmaktadır. Taramalı uç mikroskobu ailesinin bir üyesi olan Atomik kuvvet mikroskobu (AKM), 1980'lerden beri yüksek çözünürlüklü yüzey karakterizasyonu için yaygın olarak kullanılan güçlü bir araç haline gelmiştir. AKM sensörü, esnek bir kuvvet algılayıcı konsoldan ve serbest ucunda nano ölçekli nanotipten oluşmaktadır. Yüksek çözünürlüklü AKM için nano-iğnenin eğrilik yarıçapı önem taşımaktadır. Islak aşındırma teknikleri ile AKM tip mikrofabrikasyonu düşük maliyet, kolay erişim ve (100) kristal düzleminde homojen aşındırma oranı gibi avantajları bulunmaktadır. Bu çalışmada, litografi ve ıslak aşındırma gibi mikrofabrikasyon teknikleri kullanılarak silisyum nano uçlar üretilmiştir. Yüksek sivrilik ve en boy oranlı uçlara sahip olacak şekilde süreç optimize edilmiştir. Anizotropik ıslak aşındırma için Potasyum Hidroksit (KOH) ve Tetrametil Amonyum Hidroksit (TMAH) çözeltileri kullanılmıştır. Islak aşındırma işlemi için SiO2 maske kullanılmıştır. Değişik geometrilerde daha keskin nano iğneler elde edebilmek için litografi maske geometrisi ve açıları optimize edilmiştir. Çalışma neticesinde yüksek en boy oranına sahip nano iğneler, kare piramit geometrili ve asimetrik beşgen piramit geometrili nano iğneler üretilebilmiştir.

References

  • F. Houdellier, A. Masseboeuf, M. Monthioux et al., “New carbon cone nanotip for use in a highly coherent cold field emission electron microscope,” Carbon, vol. 50, no. 5, pp. 2037-2044, 2012.
  • M. Jung, D. Kim, and S. Choi, “Fabrication of sub-10nm Si-tip array coated with Si3N4 thin film for potential NSOM and liquid metal ion source applications,” Microelectronic engineering, vol. 53, no. 1-4, pp. 399-402, 2000.
  • M. d. Rezeq, and C. Joachim, “Nanotip Technology for Scanning Probe Microscopy Chapter,” Scanning Probe Microscopy, pp. 1, 2010.
  • C. Striemer, and P. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Applied physics letters, vol. 81, no. 16, pp. 2980-2982, 2002.
  • F. Ponce, and D. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” nature, vol. 386, no. 6623, pp. 351-359, 1997.
  • S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
  • A. Folch, M. S. Wrighton, and M. A. Schmidt, “Microfabrication of oxidation-sharpened silicon tips on silicon nitride cantilevers for atomic force microscopy,” Journal of microelectromechanical systems, vol. 6, no. 4, pp. 303-306, 1997.
  • I. Rangelow, “Sharp silicon tips for AFM and field emission,” Microelectronic Engineering, vol. 23, no. 1-4, pp. 369-372, 1994.
  • I. H. Kara, “Wear Behavior of Hot Rolled AZ31B and AZ31B-Nd-La Mg Alloys Tested at Different Angles to Rolling Direction,” Journal of Materials Engineering and Performance, vol. 31, no. 6, pp. 4925-4933, 2022.
  • K. E. Bean, “Anisotropic etching of silicon,” IEEE Transactions on electron devices, vol. 25, no. 10, pp. 1185-1193, 1978.
  • O. Tabata, R. Asahi, H. Funabashi et al., “Anisotropic etching of silicon in TMAH solutions,” Sensors and Actuators A: Physical, vol. 34, no. 1, pp. 51-57, 1992.
  • A. Boisen, O. Hansen, and S. Bouwstra, “AFM probes with directly fabricated tips,” Journal of Micromechanics and Microengineering, vol. 6, no. 1, pp. 58, 1996.
  • L. Li, X. Han, W. Wu et al., "Fabrication of novel cantilever with nanotip for AFM applications." pp. 2383-2386.
  • J. Han, X. Li, H. Bao et al., “AFM probes fabricated with masked–maskless combined anisotropic etching and p+ surface doping,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 198, 2005.
  • D. Resnik, D. Vrtacnik, U. Aljancic et al., “Different aspect ratio pyramidal tips obtained by wet etching of (100) and (111) silicon,” Microelectronics journal, vol. 34, no. 5-8, pp. 591-593, 2003.
  • M. Shikida, K.-i. Nanbara, T. Koizumi et al., “A model explaining mask-corner undercut phenomena in anisotropic silicon etching: a saddle point in the etching-rate diagram,” Sensors and Actuators A: Physical, vol. 97, pp. 758-763, 2002.
  • P. Pal, “Some novel processes and techniques for MEMS design, fabrication and characterization,” 2004.
  • K. Biswas, and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectronics journal, vol. 37, no. 6, pp. 519-525, 2006.
  • C. K. Kang, S. M. Lee, I. D. Jung et al., “The fabrication of patternable silicon nanotips using deep reactive ion etching,” Journal of Micromechanics and Microengineering, vol. 18, no. 7, pp. 075007, 2008.
  • Y. Wang, L. Zhu, Y. Zhang et al., “Silicon nanotips formed by self-assembled Au nanoparticle mask,” Journal of Nanoparticle Research, vol. 12, pp. 1821-1828, 2010.
  • P. Pal, and K. Sato, “Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes,” Microsystem technologies, vol. 16, pp. 1165-1174, 2010.
  • B. Tang, K. Sato, and M. A. Gosálvez, “Sharp silicon tips with different aspect ratios in wet etching/DRIE and surfactant-modified TMAH etching,” Sensors and Actuators A: Physical, vol. 188, pp. 220-229, 2012.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Ümit Çelik 0000-0002-7759-6821

Publication Date March 28, 2023
Submission Date December 8, 2022
Published in Issue Year 2023 Volume: 35 Issue: 1

Cite

APA Çelik, Ü. (2023). Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(1), 275-281. https://doi.org/10.35234/fumbd.1216284
AMA Çelik Ü. Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2023;35(1):275-281. doi:10.35234/fumbd.1216284
Chicago Çelik, Ümit. “Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, no. 1 (March 2023): 275-81. https://doi.org/10.35234/fumbd.1216284.
EndNote Çelik Ü (March 1, 2023) Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 1 275–281.
IEEE Ü. Çelik, “Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, pp. 275–281, 2023, doi: 10.35234/fumbd.1216284.
ISNAD Çelik, Ümit. “Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/1 (March 2023), 275-281. https://doi.org/10.35234/fumbd.1216284.
JAMA Çelik Ü. Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:275–281.
MLA Çelik, Ümit. “Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, 2023, pp. 275-81, doi:10.35234/fumbd.1216284.
Vancouver Çelik Ü. Kontrollü Silisyum Nano-İğnelerin Mikrofabrikasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(1):275-81.