Research Article
BibTex RIS Cite

Yıllık E-Fatura Verilerini Kullanarak Müşteri Segmentasyonu

Year 2024, Volume: 36 Issue: 2, 979 - 991, 30.09.2024
https://doi.org/10.35234/fumbd.1408941

Abstract

İşletmeler, dijital alanda gezinirken, elektronik işlemlerin yaygınlaşması stratejik karar alma için kullanılabilecek çok sayıda değerli veriye yol açmıştır. Bu çalışma, e-fatura verilerini zengin bir bilgi kaynağı olarak kullanarak müşteri profili ve segmentasyonu için CRM ve RFM analizinin uygulanmasını araştırmaktadır. Bu gelişmiş istatistiksel tekniklerden yararlanarak, elektronik işlem kayıtlarındaki gizli kalıpları ortaya çıkarmayı ve satın alma davranışlarına göre farklı müşteri segmentlerinin belirlenmesi amaçlamaktadır. Metodoloji, Fit IT Company’den bir yıllık e-fatura verisinin toplanmasını ve ön işlenmesini, ardından altta yatan yapıları ve ilişkileri ortaya çıkarmak için istatistiksel modeller uygulanmasını içermektedir. Ayrıca çalışma, müşteri segmentasyonunun pazarlama stratejileri, müşteri ilişkileri yönetimi ve kişiselleştirilmiş hizmet teklifleri üzerindeki etkilerini incelemektedir.
CRM ve RFM analizleri, müşterilere e-fatura kullanım hizmeti sonucunda elde edilen yıllık satış verileri üzerinde gerçekleştirilmiştir. Analiz sonuçları incelendiğinde, her ay ilk 10’da yer alan gönderici, alıcı ve taraflara ait işlem sayısı çıkarılmıştır. CRM ve RFM analizlerinin birlikte kullanılmasıyla müşteri segmentasyonunun daha kapsamlı bir şekilde yapılabileceği gösterilmiştir. CRM analizi işlem hacmi ve müşteri ilişkilerine odaklanırken, RFM analizi satın alma sıklığı, yakınlık ve parasal değeri değerlendirerek müşteri davranışı hakkında daha detaylı bir bakış açısı sunmaktadır. Çalışmada, e-fatura verilerinin bu iki yöntemle analiz edilmesiyle en değerli müşteri grupları belirlenmiş ve bu gruplara yönelik stratejik pazarlama yaklaşımlarının nasıl geliştirilebileceği gösterilmiştir. CRM ve RFM analizlerinin birlikte kullanılması, hem işlem hacmi hem de harcama alışkanlıklarına göre daha doğru müşteri segmentasyonuna olanak sağlamaktadır. Bu yaklaşım, müşteri sadakatini artırmak, pazarlama stratejilerini optimize etmek ve iş performansını iyileştirmek için stratejiler geliştirilebileceği sonucuna varmaktadır.

References

  • Marcus C. A practical yet meaningful approach to customer segmentation. J of Cons Mark 1998;15(5):494–504.
  • Jonker JJ, Piersma N, Van Den Poel D. Joint optimization of customer segmentation and marketing policy to maximize long-term profitability. Exp Sys w Apps 2004;27(2):159–68.
  • Kim SY, Jung TS, Suh EH, Hwang HS. Customer segmentation and strategy development based on customer lifetime value: A case study. Exp Sys w Apps 2006;31(1):101–7.
  • Lemon KN, Mark T. Customer Lifetime Value as the Basis of Customer Segmentation. J of Relation Mark 2006;5(2–3):55–69.
  • Cooil B, Aksoy L, Keiningham TL. Approaches to Customer Segmentation. J of Relation Mark 2008;6(3–4):9–39.
  • Chan C. Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer. Exp Sys w Apps 2008;34(4):2754–62.
  • Namvar M, Gholamian MR, KhakAbi S. A Two Phase Clustering Method for Intelligent Customer Segmentation. In: Modelling and Simulation 2010 International Conference on Intelligent Systems 2010; p. 215–9.
  • Wu RS, Chou PH. Customer segmentation of multiple category data in e-commerce using a soft-clustering approach. Elect Com Res and Apps 2011;10(3):331–41.
  • Hiziroglu A. Soft computing applications in customer segmentation: State-of-art review and critique. Exp Sys w Apps 2013;40(16):6491–507.
  • Hosseini M, Shabani M. New approach to customer segmentation based on changes in customer value. J Market Anal 2015; 3(3):110–21.
  • Brito PQ, Soares C, Almeida S, Monte A, Byvoet M. Customer segmentation in a large database of an online customized fashion business. Robo and Comp-Integ Manufact 2015;36:93–100.
  • Kansal T, Bahuguna S, Singh V, Choudhury T. Customer Segmentation using K-means Clustering. In: 2018 International Conference on Computational Techniques, Elec and Mec Sys (CTEMS) [Internet]. 2018. p. 135–9.
  • Amnur H. Customer relationship management and machine learning technology for identifying the customer. JOIV: Inter J on Inf Vis 2017; 1(1):12–5.
  • Al-Fedaghi S, Al-Otaibi M. Service-oriented systems as a thining machine: A case study of customer relationship management. In: 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT) [Internet]. IEEE; 2019; p. 235–42.
  • Christy AJ, Umamakeswari A, Priyatharsini L, Neyaa A. RFM ranking–An effective approach to customer segmentation. J of King S Uni-Com and Inf Sci 2021; 33(10):1251–7.
  • Taşabat SE, Esra A. Recyclıng project wıth rfm analysıs ın ındustrıal materıal sector. Sig J of Eng and Nat Sci. 2020; 38(4):1681–92.

Customer Segmentation by using Annual E-Invoice Data

Year 2024, Volume: 36 Issue: 2, 979 - 991, 30.09.2024
https://doi.org/10.35234/fumbd.1408941

Abstract

As businesses navigate the digital landscape, the proliferation of electronic transactions has led to an abundance of valuable data that can be harnessed for strategic decision-making. This study explores the application of CRM and RFM analysis for customer profiling and segmentation, utilizing e-invoice data as a rich source of information. By leveraging these advanced statistical techniques, the research aims to uncover hidden patterns within electronic transaction records, allowing for the identification of distinct customer segments based on their purchasing behavior. The methodology involved collecting and pre-processing one year of e-invoice data from Fit IT Company, followed by applying statistical models to uncover underlying structures and relationships. Furthermore, the research examines the implications of customer segmentation on marketing strategies, customer relationship management, and personalized service offerings.
CRM and RFM analyses were performed on the annual sales data obtained as a result of e-invoice usage service to customers. When the results of the analysis were analyzed, the number of transactions belonging to the sender, recipient, and parties in the top 10 every month were extracted. It has been demonstrated that customer segmentation can be conducted more comprehensively by using CRM and RFM analyses together. While CRM analysis focuses on transaction volume and customer relationships, RFM analysis provides a more detailed perspective on customer behavior by evaluating purchase frequency, recency, and monetary value. In the study, by analyzing e-invoice data through these two methods, the most valuable customer groups were identified, and how strategic marketing approaches can be developed for these groups was illustrated. The combined use of CRM and RFM analyses allows for more accurate customer segmentation based on both transaction volume and spending habits. This approach concludes that strategies can be developed to increase customer loyalty, optimize marketing strategies, and improve business performance.

References

  • Marcus C. A practical yet meaningful approach to customer segmentation. J of Cons Mark 1998;15(5):494–504.
  • Jonker JJ, Piersma N, Van Den Poel D. Joint optimization of customer segmentation and marketing policy to maximize long-term profitability. Exp Sys w Apps 2004;27(2):159–68.
  • Kim SY, Jung TS, Suh EH, Hwang HS. Customer segmentation and strategy development based on customer lifetime value: A case study. Exp Sys w Apps 2006;31(1):101–7.
  • Lemon KN, Mark T. Customer Lifetime Value as the Basis of Customer Segmentation. J of Relation Mark 2006;5(2–3):55–69.
  • Cooil B, Aksoy L, Keiningham TL. Approaches to Customer Segmentation. J of Relation Mark 2008;6(3–4):9–39.
  • Chan C. Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer. Exp Sys w Apps 2008;34(4):2754–62.
  • Namvar M, Gholamian MR, KhakAbi S. A Two Phase Clustering Method for Intelligent Customer Segmentation. In: Modelling and Simulation 2010 International Conference on Intelligent Systems 2010; p. 215–9.
  • Wu RS, Chou PH. Customer segmentation of multiple category data in e-commerce using a soft-clustering approach. Elect Com Res and Apps 2011;10(3):331–41.
  • Hiziroglu A. Soft computing applications in customer segmentation: State-of-art review and critique. Exp Sys w Apps 2013;40(16):6491–507.
  • Hosseini M, Shabani M. New approach to customer segmentation based on changes in customer value. J Market Anal 2015; 3(3):110–21.
  • Brito PQ, Soares C, Almeida S, Monte A, Byvoet M. Customer segmentation in a large database of an online customized fashion business. Robo and Comp-Integ Manufact 2015;36:93–100.
  • Kansal T, Bahuguna S, Singh V, Choudhury T. Customer Segmentation using K-means Clustering. In: 2018 International Conference on Computational Techniques, Elec and Mec Sys (CTEMS) [Internet]. 2018. p. 135–9.
  • Amnur H. Customer relationship management and machine learning technology for identifying the customer. JOIV: Inter J on Inf Vis 2017; 1(1):12–5.
  • Al-Fedaghi S, Al-Otaibi M. Service-oriented systems as a thining machine: A case study of customer relationship management. In: 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT) [Internet]. IEEE; 2019; p. 235–42.
  • Christy AJ, Umamakeswari A, Priyatharsini L, Neyaa A. RFM ranking–An effective approach to customer segmentation. J of King S Uni-Com and Inf Sci 2021; 33(10):1251–7.
  • Taşabat SE, Esra A. Recyclıng project wıth rfm analysıs ın ındustrıal materıal sector. Sig J of Eng and Nat Sci. 2020; 38(4):1681–92.
There are 16 citations in total.

Details

Primary Language English
Subjects Information Extraction and Fusion, Data Management and Data Science (Other)
Journal Section MBD
Authors

Fahrettin Burak Demir 0000-0001-9095-5166

Gürkan Çelik 0009-0005-5282-8365

Publication Date September 30, 2024
Submission Date December 25, 2023
Acceptance Date September 27, 2024
Published in Issue Year 2024 Volume: 36 Issue: 2

Cite

APA Demir, F. B., & Çelik, G. (2024). Customer Segmentation by using Annual E-Invoice Data. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 979-991. https://doi.org/10.35234/fumbd.1408941
AMA Demir FB, Çelik G. Customer Segmentation by using Annual E-Invoice Data. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2024;36(2):979-991. doi:10.35234/fumbd.1408941
Chicago Demir, Fahrettin Burak, and Gürkan Çelik. “Customer Segmentation by Using Annual E-Invoice Data”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, no. 2 (September 2024): 979-91. https://doi.org/10.35234/fumbd.1408941.
EndNote Demir FB, Çelik G (September 1, 2024) Customer Segmentation by using Annual E-Invoice Data. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 979–991.
IEEE F. B. Demir and G. Çelik, “Customer Segmentation by using Annual E-Invoice Data”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, pp. 979–991, 2024, doi: 10.35234/fumbd.1408941.
ISNAD Demir, Fahrettin Burak - Çelik, Gürkan. “Customer Segmentation by Using Annual E-Invoice Data”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (September 2024), 979-991. https://doi.org/10.35234/fumbd.1408941.
JAMA Demir FB, Çelik G. Customer Segmentation by using Annual E-Invoice Data. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:979–991.
MLA Demir, Fahrettin Burak and Gürkan Çelik. “Customer Segmentation by Using Annual E-Invoice Data”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, 2024, pp. 979-91, doi:10.35234/fumbd.1408941.
Vancouver Demir FB, Çelik G. Customer Segmentation by using Annual E-Invoice Data. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):979-91.