Nohut Özütünden Platin Nano Parçacık Sentezinin Araştırılması
Yıl 2025,
Cilt: 37 Sayı: 1, 263 - 273, 27.03.2025
Umur Üstünoğlu
,
Selin Yetim
,
Yusuf Mert Sarı
,
Burcu Nilgün Çetiner
Öz
Platin Grubu Metaller (PGM), nadir bulunmaları ve kataliz, elektronik, yakıt hücreleri gibi alanlardaki kritik kullanımları nedeniyle önemli hammaddelerdir. Bu çalışmada, yeşil kimya yaklaşımıyla nohut özütü kullanılarak atık platin kaplama çözeltilerinden nano ölçekli platin geri kazanılmıştır. Platin çözeltisinin konsantrasyonun 125 ppm olduğu ICP-OES ile doğrulanmış ve farklı oranlarda nohut filiz özütü ve saf su ilave edilerek 24 saat reaksiyona bırakılmıştır. Ardından, filtrasyon sonrası UV-VIS spektrofotometri, zeta potansiyeli ve nano parçacık boyutu analizleri gerçekleştirilmiştir. UV-VIS sonuçları, PtCl₆²⁻’nin indirgenmesiyle 220 nm’de Pt⁰ absorpsiyon pikini doğrulamıştır. Zeta potansiyeli analizleri, parçacık konsantrasyonunun artışıyla birlikte potansiyelin düştüğünü ve nanopartiküllerin topaklanma eğiliminde olduğunu göstermiştir. SEM-EDS analizleri, parçacıkların küresel formda ve yaklaşık 30 nm boyutunda olduğunu ortaya koymuştur. FTIR spektroskopisi, fenolik ve karbonil gruplarının platine bağlandığını doğrulamıştır. Sonuçlar, biyobazlı indirgeme yöntemlerinin sürdürülebilir nano platin sentezi için etkili bir alternatif sunduğunu göstermektedir. Bu çalışma, yeşil kimya ve geri dönüşüm yöntemleri, PGM geri kazanımı için umut vadeden bir yaklaşım olduğunu göstermektedir.
Etik Beyan
Etik kurul onayına gerek duyulacak bir çalışma gerçekleştirilmemiştir. Bu çalışmada yazarlar arasında çıkar çatışması bulunmamaktadır.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
TÜBİTAK BİDEB 2209-A
Teşekkür
Bu çalışma, BİDEB 2209-A - Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında finansal olarak desteklenmiştir. F.A.N.C.Y. Kuyumculuk Limited Şirketi’nden Aris Demir’e bağışladığı atık platin çözeltisi için çok teşekkür ederiz. Prof. Dr. Serdar Aktaş projenin TÜBİTAK projesi danışmanlığını yapmıştır, verdiği destek için kendisine derin sevgi ve hürmetlerimizi sunmaktayız. SEM-EDS analizlerimizde desteklerini esirgemeyen Tri Mühendislik A.Ş ve AR-GE Müh. Hilal Çolak’a, çalışmanın FT-IR ve SEM analizleri Marmara Üniversitesi Nanoteknoloji ve Biyomalzeme Uygulama ve Araştırma Merkezi (NBUAM) tarafından gerçekleştirilmiş olup, Prof. Dr. Oğuzhan Gündüz & Arş. Gör. Eray Altan’a destek ve yardımları için teşekkür ederiz. Marmara Üniversitesi Mühendislik Fakültesi Çevre Mühendisliği öğretim üyesi Doç. Dr. Esra Erken, Yük. Müh. Ceren Hür ve Uzm. Serap Yıldırım Akyel’e UV-VIS ve Malvern Nano Sizer analizlerindeki yardımları için çok teşekkür ederiz.
Kaynakça
- Erdmann L, Graedel TE. Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 2011; 45: 7620-7630.
- Saurat M, Bringezu S. Platinum group metal flows of Europe, Part 1 – global supply, use in industry, and shifting of environmental impacts. J Ind Ecol 2008; 12: 754-768.
- Kielhorn J, Melber C, Keller D, Mangelsdorf I. Palladium – a review of exposure and effects to human health. Int J Hyg Environ Health 2002; 205: 417-432.
- Melber C, Keller D, Mangelsdorf I. Palladium: Environmental Health Criteria. World Health Organization, Geneva; 2002.
- Ravindra K, Bencs L, Van Grieken R. Platinum group elements in the environment and their health risk. Sci Total Environ 2004; 318: 1-43.
- Barakat MA. New trends in removing heavy metals from industrial wastewater – review article. Arab J Chem 2011; 4: 361-377.
- Dean JA. Lange’s Handbook of Chemistry. 12th ed. McGraw-Hill Inc., New York; 1979.
- Umeda H, Sasaki A, Takahashi K, Haga K, Takasaki Y, Shibayama A. Recovery and concentration of precious metals from strong acidic wastewater. Mater Trans 2011; 52: 1462-1470.
- Ilyas S, Srivastava RR, Kim H, Cheema HA. Hydrometallurgical recycling of palladium and platinum from exhausted diesel oxidation catalysts. Sep Purif Technol 2020; 248: 117029.
- Kim M, Kim E, Jeong J, Lee J, Kim W. Recovery of platinum and palladium from the spent petroleum catalysts by substrate dissolution in sulfuric acid. Mater Trans 2010; 51: 1927-1933.
- Mpinga CN, Bradshaw SM, Akdogan G, Snyders CA, Eksteen JJ. Evaluation of the Merrill–Crowe process for the simultaneous removal of platinum, palladium and gold from cyanide leach solutions. Hydrometallurgy 2014; 142: 36-46.
- Quinet P, Proost J, Van Lierde A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Miner Metall Process 2005; 22: 17-22.
- Aktas S. Rhodium recovery from rhodium-containing waste rinsing water via cementation using zinc powder. Hydrometallurgy 2011; 106: 71-75.
- Aktas S, Morcali MH, Aksu K, Aksoy B. Recovery of ruthenium via zinc in the presence of accelerator. Trans Indian Inst Met 2018; 71: 697-703.
- Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ Res 2023; 231: 116316.
- Sigma-Aldrich. Green chemistry. [Internet]. Available from: https://www.sigmaaldrich.com/chemistry/greener-alternatives/green-chemistry.html [Accessed: 13 Sept 2024].
- Pesen D, Gençay G, Kurşun B. Environmental and economic analysis of bioenergy production and utilization in Adana, Turkey. Celal Bayar Univ J Sci 2023; 19: 1-10.
- Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy AN. Green synthesis of platinum nanoparticles using Azadirachta indica – An eco-friendly approach. Mater Lett 2016; 170: 175-178.
- Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 2018; 8: 217-254.
- Shiraz M, Imtiaz H, Azam A, et al. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37: 23-70.
- Şahin B, Aygün A, Gündüz H, Şahin K, Demir E, Akocak S, Şen F. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces 2018; 163: 119-124.
- Nishanthi R, Malathi S, Paul SJ, Palani P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C 2019; 96: 693-707.
- Al-Radadi NS. Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab J Chem 2019; 12: 330-349.
- Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab J Chem 2022; 15: 10351.
- Orhan R, Erdem M. Üzüm sapından hazırlanan aktif karbon ile sulu çözeltilerden Ni(II)’nin giderimi. Firat Univ Muh Bil Derg 2017; 29: 319-324.
- Tanyıldızı MŞ, Uygut MA. Çam kozalığıyla Bazik Mavi 3 adsorpsiyonu. Firat Univ Muh Bil Derg 2016; 28: 169-174.
- Arslanoğlu H, Tümen F. Sitrik asitle modifiye edilmiş şeker pancarı küspesi ile sulu çözeltilerden Pb(II) ve Cd(II) giderilmesi. Firat Univ Muh Bil Derg 2015; 27: 85-99.
- Baran A, Baran MF, Keskin C, Hatipoğlu A, Yavuz Ö, İrtegün Kandemir S, Adican MT, Khalilov R, Mammadova A, Ahmadian E, Rosić G, Selakovic D, Eftekhari A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front Bioeng Biotechnol 2022; 10: 855136.
- Singh V, Chatterjee S, Palecha M, Sen P, Ateeq B, Verma V. Chickpea peel waste as sustainable precursor for synthesis of fluorescent carbon nanotubes for bioimaging application. Carbon Lett 2021; 31: 117-123.
- Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22: 577-583.
- Thongnopkun P, Kitprapot W. Synthesis of the platinum particle with the pH variation for the particle size control. J Phys Conf Ser 2021; 2145: 012038.
- Ates M. Nanoparçacıkların ölçme ve inceleme teknikleri. Turk J Sci Rev 2018; 11: 63-69.
- Dobrucka R, Dlugaszewska J, Kaczmarek M. Antimicrobial and cytostatic activity of biosynthesized nanogold prepared using fruit extract of Ribes nigrum. Arab J Chem 2016; 12(8).
- Kadiroğlu P, Aydemir LY, Akcakaya FG. Prediction of functional properties of registered chickpea samples using FT-IR spectroscopy and chemometrics. LWT 2018; 93: 463-469.
- Tas O, Ertugrul U, Grunin L, Oztop MH. An investigation of functional quality characteristics and water interactions of navy bean, chickpea, pea, and lentil flours. Legume Sci 2022; 4: e136.
- Silva SD, Feliciano RP, Boas LV, Bronze MR. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem 2014; 150: 489-493.
- Xu Y, Obielodan M, Sismour E, Arnett A, Alzahrani S, Zhang B. Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. Int J Food Sci Technol 2017; 52: 1147-1154.
- Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Wiley; 2001.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th ed. Wiley; 2009.
Investigation of Platinum Nanoparticle Synthesis from Chickpea Extract
Yıl 2025,
Cilt: 37 Sayı: 1, 263 - 273, 27.03.2025
Umur Üstünoğlu
,
Selin Yetim
,
Yusuf Mert Sarı
,
Burcu Nilgün Çetiner
Öz
Their wide application range in catalysis, electronics, and fuel cells make Platinum Group Metals (PGMs) invaluable and scant raw resources. In this research, nano-scale platinum was extracted from waste platinum coating solutions via a ‘green chemistry’ technique that incorporates chickpea extract. The concentration of the platinum solution ICP-OES confirmed was 125 ppm. Various ratios of the sprouted chickpea extract and pure water were mixed prior to 24 hours of reaction. Zeta potential, UV-VIS spectrophotometry, and nanoparticle size analyses were performed after filtration. The PtCl₆²⁻ reduction with confirmed by the UV-VIS absorption peak at 220 nm. The zeta potential analysis showed that the concentration of the nanoparticle increased the potential agglomeration of the nanoparticles increased leading to a lower zeta potential. The SEM-EDS analyses showed the particles to be roughly spherical in shape and around 30 nm in diameter. The FTIR spectroscopy showed that the phenolic and carbonyl groups were attached to platinum. These results prove that the nano-platinum synthesis can successfully be scaled up. Green chemistry and recycling techniques offer a new way of approaching PGM recovery which should be considered further in the future.
Proje Numarası
TÜBİTAK BİDEB 2209-A
Kaynakça
- Erdmann L, Graedel TE. Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 2011; 45: 7620-7630.
- Saurat M, Bringezu S. Platinum group metal flows of Europe, Part 1 – global supply, use in industry, and shifting of environmental impacts. J Ind Ecol 2008; 12: 754-768.
- Kielhorn J, Melber C, Keller D, Mangelsdorf I. Palladium – a review of exposure and effects to human health. Int J Hyg Environ Health 2002; 205: 417-432.
- Melber C, Keller D, Mangelsdorf I. Palladium: Environmental Health Criteria. World Health Organization, Geneva; 2002.
- Ravindra K, Bencs L, Van Grieken R. Platinum group elements in the environment and their health risk. Sci Total Environ 2004; 318: 1-43.
- Barakat MA. New trends in removing heavy metals from industrial wastewater – review article. Arab J Chem 2011; 4: 361-377.
- Dean JA. Lange’s Handbook of Chemistry. 12th ed. McGraw-Hill Inc., New York; 1979.
- Umeda H, Sasaki A, Takahashi K, Haga K, Takasaki Y, Shibayama A. Recovery and concentration of precious metals from strong acidic wastewater. Mater Trans 2011; 52: 1462-1470.
- Ilyas S, Srivastava RR, Kim H, Cheema HA. Hydrometallurgical recycling of palladium and platinum from exhausted diesel oxidation catalysts. Sep Purif Technol 2020; 248: 117029.
- Kim M, Kim E, Jeong J, Lee J, Kim W. Recovery of platinum and palladium from the spent petroleum catalysts by substrate dissolution in sulfuric acid. Mater Trans 2010; 51: 1927-1933.
- Mpinga CN, Bradshaw SM, Akdogan G, Snyders CA, Eksteen JJ. Evaluation of the Merrill–Crowe process for the simultaneous removal of platinum, palladium and gold from cyanide leach solutions. Hydrometallurgy 2014; 142: 36-46.
- Quinet P, Proost J, Van Lierde A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Miner Metall Process 2005; 22: 17-22.
- Aktas S. Rhodium recovery from rhodium-containing waste rinsing water via cementation using zinc powder. Hydrometallurgy 2011; 106: 71-75.
- Aktas S, Morcali MH, Aksu K, Aksoy B. Recovery of ruthenium via zinc in the presence of accelerator. Trans Indian Inst Met 2018; 71: 697-703.
- Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ Res 2023; 231: 116316.
- Sigma-Aldrich. Green chemistry. [Internet]. Available from: https://www.sigmaaldrich.com/chemistry/greener-alternatives/green-chemistry.html [Accessed: 13 Sept 2024].
- Pesen D, Gençay G, Kurşun B. Environmental and economic analysis of bioenergy production and utilization in Adana, Turkey. Celal Bayar Univ J Sci 2023; 19: 1-10.
- Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy AN. Green synthesis of platinum nanoparticles using Azadirachta indica – An eco-friendly approach. Mater Lett 2016; 170: 175-178.
- Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 2018; 8: 217-254.
- Shiraz M, Imtiaz H, Azam A, et al. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37: 23-70.
- Şahin B, Aygün A, Gündüz H, Şahin K, Demir E, Akocak S, Şen F. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces 2018; 163: 119-124.
- Nishanthi R, Malathi S, Paul SJ, Palani P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C 2019; 96: 693-707.
- Al-Radadi NS. Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab J Chem 2019; 12: 330-349.
- Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab J Chem 2022; 15: 10351.
- Orhan R, Erdem M. Üzüm sapından hazırlanan aktif karbon ile sulu çözeltilerden Ni(II)’nin giderimi. Firat Univ Muh Bil Derg 2017; 29: 319-324.
- Tanyıldızı MŞ, Uygut MA. Çam kozalığıyla Bazik Mavi 3 adsorpsiyonu. Firat Univ Muh Bil Derg 2016; 28: 169-174.
- Arslanoğlu H, Tümen F. Sitrik asitle modifiye edilmiş şeker pancarı küspesi ile sulu çözeltilerden Pb(II) ve Cd(II) giderilmesi. Firat Univ Muh Bil Derg 2015; 27: 85-99.
- Baran A, Baran MF, Keskin C, Hatipoğlu A, Yavuz Ö, İrtegün Kandemir S, Adican MT, Khalilov R, Mammadova A, Ahmadian E, Rosić G, Selakovic D, Eftekhari A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front Bioeng Biotechnol 2022; 10: 855136.
- Singh V, Chatterjee S, Palecha M, Sen P, Ateeq B, Verma V. Chickpea peel waste as sustainable precursor for synthesis of fluorescent carbon nanotubes for bioimaging application. Carbon Lett 2021; 31: 117-123.
- Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22: 577-583.
- Thongnopkun P, Kitprapot W. Synthesis of the platinum particle with the pH variation for the particle size control. J Phys Conf Ser 2021; 2145: 012038.
- Ates M. Nanoparçacıkların ölçme ve inceleme teknikleri. Turk J Sci Rev 2018; 11: 63-69.
- Dobrucka R, Dlugaszewska J, Kaczmarek M. Antimicrobial and cytostatic activity of biosynthesized nanogold prepared using fruit extract of Ribes nigrum. Arab J Chem 2016; 12(8).
- Kadiroğlu P, Aydemir LY, Akcakaya FG. Prediction of functional properties of registered chickpea samples using FT-IR spectroscopy and chemometrics. LWT 2018; 93: 463-469.
- Tas O, Ertugrul U, Grunin L, Oztop MH. An investigation of functional quality characteristics and water interactions of navy bean, chickpea, pea, and lentil flours. Legume Sci 2022; 4: e136.
- Silva SD, Feliciano RP, Boas LV, Bronze MR. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem 2014; 150: 489-493.
- Xu Y, Obielodan M, Sismour E, Arnett A, Alzahrani S, Zhang B. Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. Int J Food Sci Technol 2017; 52: 1147-1154.
- Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Wiley; 2001.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th ed. Wiley; 2009.