Research Article
BibTex RIS Cite

Designating Industry 4.0 Maturity Items and Weights for Small and Medium Enterprises

Year 2021, , 79 - 86, 30.01.2021
https://doi.org/10.17671/gazibtd.733460

Abstract

The vision of Industry 4.0 is an integrated ecosystem in supply chain where every item and human in the plant has an ID in production and works without any external intervention, communicating with each other in every operation. Although such a concept of manufacturing may sound futuristic to many companies, and especially SMEs, the transition to this future is inevitable, and organizations need a roadmap to clearly understand the concepts and effectively execute the applications of Industry 4.0. In this paper, the level of importance of each Industry 4.0 criterion for SMEs is expressed and used to develop a quantitative maturity model. Analytic Hierarchy Process was utilized to calculate the weights of dimensions and maturity items. An iterative procedure led to 9 different dimensions and 33 correlated items. Initial findings showed that the “Strategy and Organization” dimension has the highest impact on maturity level along with the items “Manufacturing Software”, “Employees”, and “Industry 4.0 Roadmap”.

References

  • PricewaterhouseCoopers, Industry 4.0 : Building the digital enterprise, 1-36, 2016.
  • T. Mettler, "Maturity assessment models: a design science research approach", Int J Soc Syst Sci, 3, 81-98, 2011.
  • K. Lichtblau, V. Stich, R. Bertenrath, M. Blum, M. Bleider, A. Millack, K. Schmitt, E. Schmitz, M. Schröter, Impuls - Industrie 4.0 Readiness, Aachen, Cologne, 2015.
  • S. Mittal, M. A. Khan, D. Romero, T. Wuest, "A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs)", J Manuf Syst, 49, 194–214, 2018.
  • J. Ganzarain, N. Errasti, "Three Stage Maturity Model in SME’ s towards Industry 4.0", J Ind Eng Manag, 9, 1119–1128, 2016.
  • K. Jung, B. Kulvatunyou, S. Choi, M. P. Brundage, "An overview of a smart manufacturing system readiness assessment", IFIP Advances in Information and Communication Technology, 488, 705–712, 2017.
  • C. Leyh, T. Schäffer, K. Bley, S. Forstenhäusler, "Assessing the it and software landscapes of industry 4.0-enterprises: The maturity model SIMMI 4.0", Lecture Notes in Business Information Processing, Springer, Cham, 103–119, 2017.
  • A. Schumacher, S. Erol, W. Sihn, "A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises", Procedia CIRP, 52, 161–166, 2016.
  • T. L. Saaty, "Modeling unstructured decision problems - the theory of analytical hierarchies", Math Comput Simul, 20, 147–158, 1978.
  • S. Sipahi, M. Timor, "The analytic hierarchy process and analytic network process: An overview of applications", Manag. Decis., 48, 775–808, 2010.
  • C. Çeti̇nkaya , M. Kabak, E. Özceylan , "3D Printer Selection by Using Fuzzy Analytic Hierarchy Process and PROMETHEE", Bilişim Teknolojileri Dergisi, 10(4), 371-380, 2017.
  • R. Handfield, S. V. Walton, R. Sroufe, S. A. Melnyk, "Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process", Eur J Oper Res, 141, 70–87, 2002.
  • A. Azadeh, M. Zarrin, M. Abdollahi, S. Noury, S. Farahmand, "Leanness assessment and optimization by fuzzy cognitive map and multivariate analysis", Expert Syst Appl, 42, 6050–6064, 2015.
  • L. Nagy, T. Ruppert, J. Abonyi, "Analytic Hierarchy Process and Multilayer Network-Based Method for Assembly Line Balancing", Appl. Sci., 10, 3932, 2020.
  • N. Medić, Z. Anišić, B. Lalić, U. Marjanović, M. Brezočnik, "Hybrid fuzzy multi-attribute decision making model for evaluation of advanced digital technologies in manufacturing: Industry 4.0 perspective", Advances in Production Engineering & Management, 14(4), 483-493, 2019.
  • J. Becker, R. Knackstedt, J. Pöppelbuß, "Developing Maturity Models for IT Management", Bus Inf Syst Eng, 1, 213–222, 2009.
  • D. Tranfield, D. Denyer, P. Smart, "Towards a methodology for developing evidence-informed management knowledge by means of systematic review", British Journal of Management, 14, 207-222, 2003.
  • A. Moeuf, R. Pellerin, S. Lamouri, S. Tamayo-Giraldo, R. Barbaray, "The industrial management of SMEs in the era of Industry 4.0", Int J Prod Res, 56(3), 1118-1136, 2018.
  • R. W. Saaty, "The analytic hierarchy process—what it is and how it is used", Math Model, 9, 161–176, 1987.
  • K. Y. Akdil, A. Ustundag, E. Cevikcan, "Maturity and Readiness Model for Industry 4.0 Strategy", Industry 4.0: Managing The Digital Transformation, Springer, Cham, 61–94, 2018.
  • PricewaterhouseCoopers, Industry 4.0 - Enabling Digital Operations Self Assessment, 2016.
  • A. Kermer-Meyer, "Industry 4.0 Maturity Assessment", Hannover Messe 2017, Hannover, Germany, 1–9, 2017.
  • M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, The Boston Consulting Group, 2015.
  • J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, A. V. Vasilakos, "Software-Defined Industrial Internet of Things in the Context of Industry 4.0.", IEEE Sens J, 16, 7373–7380, 2016.
  • D. Wu, A. Ren, W. Zhang, F. Fan, P. Liu, X. Fu, J. Terpenny, "Cybersecurity for digital manufacturing", J Manuf Syst., 48, 3-12, 2018.
  • E. Gökalp, U. Şener, P. E. Eren, "Development of an Assessment Model for Industry 4.0: Industry 4.0-MM", Software Process Improvement and Capability Determination, vol 770. Editör: Mas A., Mesquida A., O'Connor R., Rout T., Dorling A., Springer, Cham, 128–142, 2017.

Küçük ve Orta Ölçekli İşletmeler için Endüstri 4.0 Olgunluk Öğeleri ve Ağırlıklarının Belirlenmesi

Year 2021, , 79 - 86, 30.01.2021
https://doi.org/10.17671/gazibtd.733460

Abstract

Endüstri 4.0'ın vizyonu, tedarik zincirinde tesisteki her bir öğenin ve insanın üretimde bir kimliğe sahip olduğu ve herhangi bir işlemde birbirleriyle iletişim kurarak herhangi bir dış müdahale olmaksızın çalıştığı entegre bir ekosistemdir. Böyle bir üretim kavramı birçok şirkete, özellikle de KOBİ'lere fütüristik gelse de, bu geleceğe geçiş kaçınılmazdır ve kuruluşlar, kavramları açıkça anlamak ve Endüstri 4.0 uygulamalarını etkili bir şekilde yürütmek için bir yol haritasına ihtiyaç duyarlar. Bu makalede, her bir Endüstri 4.0 kriterinin KOBİ'ler için önem seviyesi ifade edilmiş ve nicel bir olgunluk modeli geliştirmek için kullanılmıştır. Boyutların ve olgunluk öğelerinin ağırlıklarının hesaplanmasında Analitik Hiyerarşi Süreci kullanılmıştır. Çalışma kapsamında 9 farklı boyut ve 33 ilişkili öğe belirlenmiştir. İlk bulgular, “Strateji ve Organizasyon” boyutunun “Üretim Yazılımı”, “Çalışanlar” ve “Endüstri 4.0 Yol Haritası” öğeleriyle birlikte olgunluk seviyesi üzerinde en yüksek etkiye sahip olduğunu göstermiştir.

References

  • PricewaterhouseCoopers, Industry 4.0 : Building the digital enterprise, 1-36, 2016.
  • T. Mettler, "Maturity assessment models: a design science research approach", Int J Soc Syst Sci, 3, 81-98, 2011.
  • K. Lichtblau, V. Stich, R. Bertenrath, M. Blum, M. Bleider, A. Millack, K. Schmitt, E. Schmitz, M. Schröter, Impuls - Industrie 4.0 Readiness, Aachen, Cologne, 2015.
  • S. Mittal, M. A. Khan, D. Romero, T. Wuest, "A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs)", J Manuf Syst, 49, 194–214, 2018.
  • J. Ganzarain, N. Errasti, "Three Stage Maturity Model in SME’ s towards Industry 4.0", J Ind Eng Manag, 9, 1119–1128, 2016.
  • K. Jung, B. Kulvatunyou, S. Choi, M. P. Brundage, "An overview of a smart manufacturing system readiness assessment", IFIP Advances in Information and Communication Technology, 488, 705–712, 2017.
  • C. Leyh, T. Schäffer, K. Bley, S. Forstenhäusler, "Assessing the it and software landscapes of industry 4.0-enterprises: The maturity model SIMMI 4.0", Lecture Notes in Business Information Processing, Springer, Cham, 103–119, 2017.
  • A. Schumacher, S. Erol, W. Sihn, "A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises", Procedia CIRP, 52, 161–166, 2016.
  • T. L. Saaty, "Modeling unstructured decision problems - the theory of analytical hierarchies", Math Comput Simul, 20, 147–158, 1978.
  • S. Sipahi, M. Timor, "The analytic hierarchy process and analytic network process: An overview of applications", Manag. Decis., 48, 775–808, 2010.
  • C. Çeti̇nkaya , M. Kabak, E. Özceylan , "3D Printer Selection by Using Fuzzy Analytic Hierarchy Process and PROMETHEE", Bilişim Teknolojileri Dergisi, 10(4), 371-380, 2017.
  • R. Handfield, S. V. Walton, R. Sroufe, S. A. Melnyk, "Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process", Eur J Oper Res, 141, 70–87, 2002.
  • A. Azadeh, M. Zarrin, M. Abdollahi, S. Noury, S. Farahmand, "Leanness assessment and optimization by fuzzy cognitive map and multivariate analysis", Expert Syst Appl, 42, 6050–6064, 2015.
  • L. Nagy, T. Ruppert, J. Abonyi, "Analytic Hierarchy Process and Multilayer Network-Based Method for Assembly Line Balancing", Appl. Sci., 10, 3932, 2020.
  • N. Medić, Z. Anišić, B. Lalić, U. Marjanović, M. Brezočnik, "Hybrid fuzzy multi-attribute decision making model for evaluation of advanced digital technologies in manufacturing: Industry 4.0 perspective", Advances in Production Engineering & Management, 14(4), 483-493, 2019.
  • J. Becker, R. Knackstedt, J. Pöppelbuß, "Developing Maturity Models for IT Management", Bus Inf Syst Eng, 1, 213–222, 2009.
  • D. Tranfield, D. Denyer, P. Smart, "Towards a methodology for developing evidence-informed management knowledge by means of systematic review", British Journal of Management, 14, 207-222, 2003.
  • A. Moeuf, R. Pellerin, S. Lamouri, S. Tamayo-Giraldo, R. Barbaray, "The industrial management of SMEs in the era of Industry 4.0", Int J Prod Res, 56(3), 1118-1136, 2018.
  • R. W. Saaty, "The analytic hierarchy process—what it is and how it is used", Math Model, 9, 161–176, 1987.
  • K. Y. Akdil, A. Ustundag, E. Cevikcan, "Maturity and Readiness Model for Industry 4.0 Strategy", Industry 4.0: Managing The Digital Transformation, Springer, Cham, 61–94, 2018.
  • PricewaterhouseCoopers, Industry 4.0 - Enabling Digital Operations Self Assessment, 2016.
  • A. Kermer-Meyer, "Industry 4.0 Maturity Assessment", Hannover Messe 2017, Hannover, Germany, 1–9, 2017.
  • M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, The Boston Consulting Group, 2015.
  • J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, A. V. Vasilakos, "Software-Defined Industrial Internet of Things in the Context of Industry 4.0.", IEEE Sens J, 16, 7373–7380, 2016.
  • D. Wu, A. Ren, W. Zhang, F. Fan, P. Liu, X. Fu, J. Terpenny, "Cybersecurity for digital manufacturing", J Manuf Syst., 48, 3-12, 2018.
  • E. Gökalp, U. Şener, P. E. Eren, "Development of an Assessment Model for Industry 4.0: Industry 4.0-MM", Software Process Improvement and Capability Determination, vol 770. Editör: Mas A., Mesquida A., O'Connor R., Rout T., Dorling A., Springer, Cham, 128–142, 2017.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sadi Etkeser

Lütfi Apilioğulları

Publication Date January 30, 2021
Submission Date May 7, 2020
Published in Issue Year 2021

Cite

APA Etkeser, S., & Apilioğulları, L. (2021). Designating Industry 4.0 Maturity Items and Weights for Small and Medium Enterprises. Bilişim Teknolojileri Dergisi, 14(1), 79-86. https://doi.org/10.17671/gazibtd.733460