Research Article
BibTex RIS Cite

Transmitting and Analysis of Vital Health Data with CoAP Observe Method

Year 2022, Volume: 15 Issue: 2, 107 - 118, 30.04.2022
https://doi.org/10.17671/gazibtd.1002839

Abstract

Internet of Things (IoT) is one of the most preferred technologies of recent times. Today, the use of IoT in daily life is increasing and it is expected to increase even more over time. IoT devices can automatically communicate with each other, receive data from other devices or generate data through sensors on them, without the need for any user. IoT can be used in smart city systems, home automation systems, traffic and many other areas. One of the areas where the IoT system is used is the health sector. In healthcare technology, IoT systems play an important role in the automatic retrieval, monitoring and processing of patients' health data. Elderly patients who do not want to be in a crowded environment or who need home care may need to be monitored and treated remotely. As a solution to these situations, an IoT system can be designed to collect health data of individuals and transmit this data to a health institution quickly and reliably. Analyzing the performance of network protocol stacks working with IoT systems will be very useful to find the best protocol combination for the system. In this study, CoAP-Observe was used to transmit health data such as heart rate, glucose level, heart chart, and the performance analysis of this method was performed. In the performance analysis, 4 different metrics such as latency, energy efficiency, reliability and throughput were determined to evaluate the results. A total of 12 different scenarios were evaluated using 4 different scenarios and 3 different PDR (Packet Delivery Ratio) values (100, 95, 90) using MAC (Media Access Control) protocols CSMA, nullMAC and RDC protocols (Radio Duty Cycle) contikiMAC, nullRDC.

References

  • V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures,” IEEE Access, 7, 82721–82743, 2019
  • P.M.GHATE and S. U. DHARMKARE, “Coap Based Healthcare Monitoring System”, 9, 13–17, 2017.
  • U. Tuğba ÇALIŞKAN, "Yaşlanan Nüfus Gereksinimlerine Yönelik Evde Sağlık Hizmetleri 2020 Yılı Değerlendirmesi: Eğitim Araştırma Hastanesi Örneği 1", Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi (ASEAD).
  • S. Köstekli, S. Çelik, and E. Karahan, “Cerrahi Hastasının Taburculuk Sonrası Tele Sağlık Yöntemi ile Hemşirelik Bakımının Önemi”, 1(1), 30–38, 2020.
  • S. Dilek and S. Özdemir, “Sağlık Hizmetleri Sektöründe Kablosuz Algılayıcı Ağlar”, Bilişim Teknol. Derg., 7(2), 2013, doi: 10.12973/bid.2016.
  • CoRE Working Group, “Observing Resources in CoAP,” IETF, 2014.
  • H. A. Khattak, M. Ruta, E. Eugenio, and D. Sciascio, “CoAP-based healthcare sensor networks: A survey”, Proc. 2014 11th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2014, 499–503, 2014, doi: 10.1109/IBCAST.2014.6778196.
  • M. A. Tariq, M. Khan, M. T. R. Khan, and D. Kim, “Enhancements and challenges in coap—a survey”, MDPI, Sensors (Switzerland), 20(21), 1–29, 2020, doi: 10.3390/s20216391.
  • S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, “The internet of things for health care: A comprehensive survey”, IEEE Access, 3, 678-708, 2015, doi: 10.1109/ACCESS.2015.2437951.
  • S. BİLGİLİ and A. K. DEMİR, “Determination of the Ideal Protocol Stack for the Transmission of Health Data over 6LoWPAN IoT Networks”, Balk. J. Electr. Comput. Eng., 8(2), 154 - 163, 2020, doi: 10.17694/bajece.644104.
  • I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Observing CoAP groups efficiently”, Ad Hoc Networks, 37(2), 368-388, 2016, doi: 10.1016/j.adhoc.2015.08.030.
  • A. B. Christian, L. Sharma, and S. L. Wu, “AED: Adaptive Energy-Efficient Data Transmission Scheme for Heart Disease Detection”, IEEE International Symposium on Dependable, Autonomic and Secure Computing (DASC), 6-10, 2017.
  • A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, and B. Freisleben, “IoT-based health monitoring via LoRaWAN”, IEEE EUROCON 2017 -17th International Conference on Smart Technologies, 6, 1-13, doi: 10.1109/EUROCON.2017.8011165.
  • C. Leksrisawat and T. Samanchuen, “An Integration of Personal Health Device and HL7 FHIR Using CoAP”, 2021 4th Int. Conf. Circuits, Syst. Simulation, ICCSS 2021, 1–5, 2021, doi: 10.1109/ICCSS51193.2021.9464189.
  • K. Kabilan, N. Bhalaji, and S. Chithra, “Analysis of 6LOWPAN and CoAP Protocols for Maternal Health Care”, Lect. Notes Electr. Eng., 521, 171–180, 2019, doi: 10.1007/978-981-13-1906-8_19.
  • A. Sehgal, “Using the Contiki Cooja Simulator”, Comput. Sci. Jacobs Univ. Bremen Campus Ring, 2013.
  • A. Velinov and A. Mileva, “Running and Testing Applications for Contiki OS Using Cooja Simulator”, International Conference on Information Technology and Development of Education – ITRO, 2016.
  • D. Ugrenovic and G. Gardasevic, “CoAP protocol for Web-based monitoring in IoT healthcare applications”, 23rd Telecommun. Forum, TELFOR 2015, 79–82, 2016, doi: 10.1109/TELFOR.2015.7377418.
  • S. Görmüş, H. Aydın, and G. Ulutaş, “Security for the internet of things: a survey of existing mechanisms, protocols and open research issues”, J. Fac. Eng. Archit. Gazi Univ., 33(4), 1247–1272, 2018, doi: 10.17341/gazimmfd.416406.
  • A. Alkhayyat, A. A. Thabit, F. A. Al-Mayali, and Q. H. Abbasi, “WBSN in IoT health-based application: Toward delay and energy consumption minimization”, J. Sensors, vol. 2019, 2019, doi: 10.1155/2019/2508452.
  • N. A. Pantazis, D. D. Vergados, N. I. Miridakis, and D. J. Vergados, “Power Control Schemes in Wireless Sensor Networks for Homecare e-Health Applications”, Proc. 1st ACM Int. Conf. PErvasive Technol. Relat. to Assist. Environ. - PETRA ’08, 85, 1-8, 2008, doi: 10.1145/1389586.
  • M. Kathuria and S. Gambhir, “Reliable delay sensitive loss recovery protocol for critical health data transmission system”, 2015 1st Int. Conf. Futur. Trends Comput. Anal. Knowl. Manag., 333–339, 2015, doi: 10.1109/ABLAZE.2015.7155007.
  • C. Jung, “Prioritized Data Transmission Mechanism for IoT”, KSII Trans. Internet Inf. Syst., 14(6), 2333–2353, 2020, doi: 10.3837/TIIS.2020.06.002.
  • E. Nezi̇roğlu and U. Nagi̇han Karahan, Mavi Kod Çağrilarinda Neden Sonuç Ve Protokole Uygunluğun Değerlendirilmesi, Doktora tezi, İzmir Katip Çelebi Üniversitesi, Tıp Fakültesi, 2019.
  • R. Alhussaini, A. K. Idrees, and M. A. Salman, “Data Transmission Protocol for Reducing the Energy Consumption in Wireless Sensor Networks,” Commun. Comput. Inf. Sci., 938, 35–49, Oct. 2018, doi: 10.1007/978-3-030-01653-1_3.
  • M. Benaddy, B. El Habil, M. El Ouali, O. El Meslouhi, and S. Krit, “A mutlipath routing algorithm for wireless sensor networks under distance and energy consumption constraints for reliable data transmission”, Proc. - 2017 Int. Conf. Eng. MIS, ICEMIS 2017, 1–4, 2018, doi: 10.1109/ICEMIS.2017.8273076.
  • J. Y. Jung and J. W. Lee, “Reliable Data Transmission in ZigBee Based Health Monitoring System L --otw Sim,” Proc. 10th Int. Conf. Adv. Commun. Technol., 795–797, 17-20, 2008.
  • G. H. Z. Ieee et al., 2.4 GHz IEEE 802.15.4/RF TRANSCEIVER datasheet, December, 2007.
  • İnternet: https://datatracker.ietf.org/wg/6tisch/documents/, 2021.
  • İnternet: https://datatracker.ietf.org/doc/rfc9030/, 2021

Hayati Sağlık Verilerinin CoAP Observe Yöntemi ile İletilmesi ve Analizi

Year 2022, Volume: 15 Issue: 2, 107 - 118, 30.04.2022
https://doi.org/10.17671/gazibtd.1002839

Abstract

Nesnelerin İnterneti (IoT), son zamanların en çok tercih edilen teknolojilerinden biridir. Günümüzde IoT'nin günlük hayatta kullanımı artmakta ve zamanla daha da artması beklenmektedir. IoT cihazları, herhangi bir kullanıcıya ihtiyaç duymadan birbirleriyle otomatik olarak iletişim kurabilir, diğer cihazlardan veri alabilir veya üzerlerindeki sensörler aracılığıyla veri üretebilir. IoT, akıllı şehir sistemlerinde, ev otomasyon sistemlerinde, trafikte ve diğer birçok alanda kullanılabilir. IoT sisteminin kullanıldığı alanlardan biri de sağlık sektörüdür. Sağlık teknolojisinde IoT sistemleri, hastaların sağlık verilerinin otomatik olarak alınmasında, izlenmesinde ve işlenmesinde önemli bir rol oynar. Kalabalık bir ortamda olmak istemeyen veya evde bakıma ihtiyaç duyan yaşlı hastaların uzaktan izlenip tedavi edilmeleri gerekebilir. Bu durumlara çözüm olarak bireylerin sağlık verilerini toplayıp bir sağlık kuruluşuna bu verileri hızlı ve güvenilir şekilde iletmek için bir IoT sistemi tasarlanabilir. IoT sistemleriyle çalışan ağ protokol yığınlarının performansının analiz edilmesi sistemin en iyi protokol kombinasyonunu bulmak adına oldukça faydalı olacaktır. Bu çalışmada, kişilerin nabzı, glikoz seviyesi, kalp grafiği gibi sağlık verilerini iletmek için CoAP (Constrained Application Protocol)-Observe kullanılmış ve bu yöntemin performans analizi yapılmıştır. Yapılan performans analizinde sonuçların değerlendirilmesi için gecikme, enerji verimliliği, güvenilirlik ve işlem hacmi gibi 4 farklı metrik belirlenmiştir. MAC (Media Access Control) protokollerinden CSMA (Carrier Sense Multiple Access), nullMAC ve RDC (Radio Duty Cycle) protokollerinden contikiMAC, nullRDC protokolleri kullanılarak 4 farklı senaryo ve 3 farklı PDR (Packet Delivery Ratio) değeri (100, 95, 90) kullanılarak toplam 12 farklı senaryo değerlendirmesi yapılmıştır.

References

  • V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures,” IEEE Access, 7, 82721–82743, 2019
  • P.M.GHATE and S. U. DHARMKARE, “Coap Based Healthcare Monitoring System”, 9, 13–17, 2017.
  • U. Tuğba ÇALIŞKAN, "Yaşlanan Nüfus Gereksinimlerine Yönelik Evde Sağlık Hizmetleri 2020 Yılı Değerlendirmesi: Eğitim Araştırma Hastanesi Örneği 1", Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi (ASEAD).
  • S. Köstekli, S. Çelik, and E. Karahan, “Cerrahi Hastasının Taburculuk Sonrası Tele Sağlık Yöntemi ile Hemşirelik Bakımının Önemi”, 1(1), 30–38, 2020.
  • S. Dilek and S. Özdemir, “Sağlık Hizmetleri Sektöründe Kablosuz Algılayıcı Ağlar”, Bilişim Teknol. Derg., 7(2), 2013, doi: 10.12973/bid.2016.
  • CoRE Working Group, “Observing Resources in CoAP,” IETF, 2014.
  • H. A. Khattak, M. Ruta, E. Eugenio, and D. Sciascio, “CoAP-based healthcare sensor networks: A survey”, Proc. 2014 11th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2014, 499–503, 2014, doi: 10.1109/IBCAST.2014.6778196.
  • M. A. Tariq, M. Khan, M. T. R. Khan, and D. Kim, “Enhancements and challenges in coap—a survey”, MDPI, Sensors (Switzerland), 20(21), 1–29, 2020, doi: 10.3390/s20216391.
  • S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, “The internet of things for health care: A comprehensive survey”, IEEE Access, 3, 678-708, 2015, doi: 10.1109/ACCESS.2015.2437951.
  • S. BİLGİLİ and A. K. DEMİR, “Determination of the Ideal Protocol Stack for the Transmission of Health Data over 6LoWPAN IoT Networks”, Balk. J. Electr. Comput. Eng., 8(2), 154 - 163, 2020, doi: 10.17694/bajece.644104.
  • I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Observing CoAP groups efficiently”, Ad Hoc Networks, 37(2), 368-388, 2016, doi: 10.1016/j.adhoc.2015.08.030.
  • A. B. Christian, L. Sharma, and S. L. Wu, “AED: Adaptive Energy-Efficient Data Transmission Scheme for Heart Disease Detection”, IEEE International Symposium on Dependable, Autonomic and Secure Computing (DASC), 6-10, 2017.
  • A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, and B. Freisleben, “IoT-based health monitoring via LoRaWAN”, IEEE EUROCON 2017 -17th International Conference on Smart Technologies, 6, 1-13, doi: 10.1109/EUROCON.2017.8011165.
  • C. Leksrisawat and T. Samanchuen, “An Integration of Personal Health Device and HL7 FHIR Using CoAP”, 2021 4th Int. Conf. Circuits, Syst. Simulation, ICCSS 2021, 1–5, 2021, doi: 10.1109/ICCSS51193.2021.9464189.
  • K. Kabilan, N. Bhalaji, and S. Chithra, “Analysis of 6LOWPAN and CoAP Protocols for Maternal Health Care”, Lect. Notes Electr. Eng., 521, 171–180, 2019, doi: 10.1007/978-981-13-1906-8_19.
  • A. Sehgal, “Using the Contiki Cooja Simulator”, Comput. Sci. Jacobs Univ. Bremen Campus Ring, 2013.
  • A. Velinov and A. Mileva, “Running and Testing Applications for Contiki OS Using Cooja Simulator”, International Conference on Information Technology and Development of Education – ITRO, 2016.
  • D. Ugrenovic and G. Gardasevic, “CoAP protocol for Web-based monitoring in IoT healthcare applications”, 23rd Telecommun. Forum, TELFOR 2015, 79–82, 2016, doi: 10.1109/TELFOR.2015.7377418.
  • S. Görmüş, H. Aydın, and G. Ulutaş, “Security for the internet of things: a survey of existing mechanisms, protocols and open research issues”, J. Fac. Eng. Archit. Gazi Univ., 33(4), 1247–1272, 2018, doi: 10.17341/gazimmfd.416406.
  • A. Alkhayyat, A. A. Thabit, F. A. Al-Mayali, and Q. H. Abbasi, “WBSN in IoT health-based application: Toward delay and energy consumption minimization”, J. Sensors, vol. 2019, 2019, doi: 10.1155/2019/2508452.
  • N. A. Pantazis, D. D. Vergados, N. I. Miridakis, and D. J. Vergados, “Power Control Schemes in Wireless Sensor Networks for Homecare e-Health Applications”, Proc. 1st ACM Int. Conf. PErvasive Technol. Relat. to Assist. Environ. - PETRA ’08, 85, 1-8, 2008, doi: 10.1145/1389586.
  • M. Kathuria and S. Gambhir, “Reliable delay sensitive loss recovery protocol for critical health data transmission system”, 2015 1st Int. Conf. Futur. Trends Comput. Anal. Knowl. Manag., 333–339, 2015, doi: 10.1109/ABLAZE.2015.7155007.
  • C. Jung, “Prioritized Data Transmission Mechanism for IoT”, KSII Trans. Internet Inf. Syst., 14(6), 2333–2353, 2020, doi: 10.3837/TIIS.2020.06.002.
  • E. Nezi̇roğlu and U. Nagi̇han Karahan, Mavi Kod Çağrilarinda Neden Sonuç Ve Protokole Uygunluğun Değerlendirilmesi, Doktora tezi, İzmir Katip Çelebi Üniversitesi, Tıp Fakültesi, 2019.
  • R. Alhussaini, A. K. Idrees, and M. A. Salman, “Data Transmission Protocol for Reducing the Energy Consumption in Wireless Sensor Networks,” Commun. Comput. Inf. Sci., 938, 35–49, Oct. 2018, doi: 10.1007/978-3-030-01653-1_3.
  • M. Benaddy, B. El Habil, M. El Ouali, O. El Meslouhi, and S. Krit, “A mutlipath routing algorithm for wireless sensor networks under distance and energy consumption constraints for reliable data transmission”, Proc. - 2017 Int. Conf. Eng. MIS, ICEMIS 2017, 1–4, 2018, doi: 10.1109/ICEMIS.2017.8273076.
  • J. Y. Jung and J. W. Lee, “Reliable Data Transmission in ZigBee Based Health Monitoring System L --otw Sim,” Proc. 10th Int. Conf. Adv. Commun. Technol., 795–797, 17-20, 2008.
  • G. H. Z. Ieee et al., 2.4 GHz IEEE 802.15.4/RF TRANSCEIVER datasheet, December, 2007.
  • İnternet: https://datatracker.ietf.org/wg/6tisch/documents/, 2021.
  • İnternet: https://datatracker.ietf.org/doc/rfc9030/, 2021
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Articles
Authors

Gökçe Manap 0000-0002-8110-8341

Alper Kamil Demir 0000-0002-9256-0368

Publication Date April 30, 2022
Submission Date September 30, 2021
Published in Issue Year 2022 Volume: 15 Issue: 2

Cite

APA Manap, G., & Demir, A. K. (2022). Hayati Sağlık Verilerinin CoAP Observe Yöntemi ile İletilmesi ve Analizi. Bilişim Teknolojileri Dergisi, 15(2), 107-118. https://doi.org/10.17671/gazibtd.1002839