Eğitim İçerikleri için Sezgisel Metin Bölütlemeye Dayalı Çoklu Etiketleme Stratejisi: M.E.B. Sanat Tarihi Kitabı için Bir Durum Çalışması
Year 2022,
Volume: 15 Issue: 2, 139 - 148, 30.04.2022
Selcan Kayahan
,
Korhan Günel
,
Urfat Nuriyev
Abstract
Bu çalışmada, eğitim içeriklerinden otomatik öğretim kavramlarının tespit edilerek, metnin anlamsal bütünlük arz eden ve birbiriyle çakışan metin bloklarına bölütlenmesi ve metin blokları içindeki paragrafların öncelik derecesine bağlı olarak birden fazla öğretim kavramı ile etiketlendirilmesine amaçlanmıştır. Çalışmada T.C. Millî Eğitim Bakanlığı’na bağlı okullarda okutulan Sanat Tarihi kitabı kullanılmıştır. Kitap üzerine doğal dil işleme ve sezgisel kümeleme yaklaşımları uygulanmış ve dokümanın her bir paragrafının hangi öğretim kavramıyla ilişkili olduğunun belirlenmesi hedeflenmiştir. Hedef doğrultusunda, ayrıştırılan metin bloklarını temsil eden öznitelik vektörleri çıkartılmış ve bu öznitelik vektörleri üzerine Temel Bileşen Analizi uygulandıktan sonra Parçacık Sürü Optimizasyonu (Particle Swarm Optimization, PSO) yaklaşımı ile kümeleme işlemi gerçekleştirilmiştir. Bununla birlikte, önerilen sistemin başarım oranlarının belirlenmesi için bölütlendirilmiş metin blokları alan uzmanı tarafından kitap içinde sunulan öğretim kavramları ile eşleştirilmiştir. Ardından uzman görüşleri ve sistem çıktıları karşılaştırılarak ağırlıklandırılmış ortalama karesel hata değeri hesaplanmıştır. Elde edilen sonuç, eğitim içeriklerinin birden fazla öğretim kavramı ile etiketlenmiş metin bloklarına ayrıştırılabileceği konusunda umut vermektedir.
References
- İnternet: http://www.tdk.gov.tr, 27.04.2021
- B. Ü. Bozkurt, “Kavram, Kavramsallaştırma Yaklaşımları ve Kavram Öğretimi Modelleri: Kuramsal Bir Derleme ve Sözcük Öğretimi Açısından Bir Değerlendirme”, Ankara Üniversitesi Dil Dergisi, 2018.
- R. Luckin and M. Cukurova, “Designing educational technologies in the age of AI: A learning sciences-driven approach”, British Journal of Educational Technology, 50 (6), 2824-2838, 2019. https://doi.org/10.1111/bjet.12861
- A. Renz and R. Hilbig, “Prerequisites for artificial intelligence in further education: identification of drivers, barriers, and business models of educational technology companies”, International Journal of Educational Technology in Higher Education, 17, 14 (2020). https://doi.org/10.1186/s41239-020-00193-3.
- F. Ouyang and P. Jiao, “Artificial intelligence in education: The three paradigms”, Computers and Education: Artificial Intelligence, 2, 100020, 2021.
- X. Zhai et. al, "A Review of Artificial Intelligence (AI) in Education from 2010 to 2020", Complexity. https://doi.org/10.1155/2021/8812542
- V. Nabiyev and A.K. Erümit, Eğitimde Yapay Zeka: Kuramdan Uygulamaya, 2020.
- M. Akdeniz and F. Özdinç , "Eğitimde Yapay Zeka Konusunda Türkiye Adresli Çalışmaların İncelenmesi", Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 912-932, 2021. https://doi.org/10.33711/yyuefd.938734
- S. Burkhardt and S. Kramer, “Online multi-label dependency topic models for text classification”, Mach Learn, 107, 859–886, 2018.
- J. M. Moyano, E.L. Gibaja, K. J. Cios and S. Ventura, “Review of ensembles of multi-label classifiers: Models, experimental study and prospects”, Information Fusion, 44, 33-45, 2018.
- A.N. Tarekegn, M. Giacobini, and K. Michalak, “A review of methods for imbalanced multi-label classification”, Pattern Recognition, 118, 2021.
- L. Liu, J. Kang, J. Yu, and Z. Wang, “A comparative study on unsupervised feature selection methods for text clustering”, In Proc. 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering, 597–601, 2005.
- V. Kumar, A. K. Pujari, V. Padmanaphan, S. K. Sahu, and V. R. Kagita, “Multi-label classification using hierarchical embedding”, Expert System with Application, 91, 263-269, 2018.
- J. Lee, I. Yu, P. Park and D.W. Kim, “Memetic feature selection for multilabel text categorization using label frequency difference”, Information Sciences, 485, 263-280, 2019.
- Z. Yang and G. Liu, “Hierarchical Sequence-to-Sequence Model for Multi-Label Text Classification”, IEEE Access, 7, 153012-153020, 2019.
- N. Aljedani, R. Alotaibi and M. Taileb, “HMATC: Hierarchical multi-label Arabic text classification model using machine learning”, Egyptian Informatics Journal, 2020.
- P. Deepak, K. Visweswariah, N. Wiratunga, and S. Sani, “Two-part segmentation of text documents”, Proceedings of the 21st ACM international conference on Information and knowledge management (CIKM '12), Association for Computing Machinery, New York, NY, USA, 793–802, 2012.
- I. Pak and L. P. Teh, “Text Segmentation Techniques: A Critical Review”, Springer International Publishing, 2017.
- D. Beeferman, A. Berger and J. Lafferty, “Statistical Models for Text Segmentation”, Machine Learning 34, 177–210, 1999.
- H. Oh, S. H. Myaeng, and M. G. Jang, “Semantic passage segmentation based on sentence topics for question answering”, Information Science (Ny), 177, 3696–3717, 2007.
- G. K. Hoon, P. K. Keong and T. E. Kong, “A Semantic Learning Approach for Mapping Unstructured Query to Web Resources”, IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings) (WI'06), 494-497, https://doi.org/10.1109/WI.2006.24, 2006.
- G. K. Hoon and T. C. Wei, “Flexible facets generation for faceted search”, First EAI International Conference on Computer Science Engineering EAI 1–3 Penang: Malaysia, 2017.
- D. Duan, W. Qian and S. Pan, “VISA: A visual sentiment analysis system”, Proceedings 5th International Symposium Visa Information Communicate Interaction— VINCI’12, 22–28, ACM: Hangzhou, 2012.
- C. Q. G. Wentao and C. Scheepers, “Effects of Text Segmentation On Silent Reading Of Chinese Regulated Poems: Evidence From Eye Movements”, The Journal of Chinese Linguistics, 44(2) 265-286, 2017.
- K. Günel, R. Polat and M. Kurt, “Analyzing Learning Concepts in Intelligent Tutoring Systems”, The International Arab Journal of Information Technology, 13(2), 2016.
- B. T. Dinçer and B. Karaoğlan, “Stemming in Agglutinative Languages: A Probabilistic Stemmer for Turkish”, Computer and Information Sciences - ISCIS 2003, 18th International Symposium, Antalya, Turkey, 2003.
- C. Meadow, B. Boyce and D. Kraft, Text Information Retrieval Systems, second ed. Academic Press, 2000.
- M. Bilgin, "Kelime Vektörü Yöntemlerinin Model Oluşturma Sürelerinin Karşılaştırılması", Bilişim Teknolojileri Dergisi, Cilt 12(2), 141 – 146, 2019, doi:10.17671/gazibtd.472226.
- K. Zubrinik, D. Kalpic and M. Milicevic, “The automatic creation of concept maps from documents written using morphologically rich languages”, Expert System with Aplications, 39(16), 12709-12718, 2012.
- C. Manning, P. Raghavan and H. Schütze, “An Introduction to Information Retrieval”, Cambridge University Press, 2009.
- S. Kumova, S. and B. Karaoğlan, “Stop Word Detection as A Binary Classification Problem”, Anadolu University Journal of Science and Technology, 18(2), 346 – 359, 2017.
- R. Aşliyan R., K. Günel and T. Yakhno, Detecting Misspelled Words in Turkish Text Using Syllable n-gram Frequencies, In: Ghosh A., De R.K., Pal S.K. (eds), Pattern Recognition and Machine Intelligence, PReMI 2007, Lecture Notes in Computer Science, 4815, Springer, Berlin, Heidelberg, 2007.
- I. Jolliffe, “Principal Component Analysis”, Encyclopedia of Statistics in Behavioral Science, 648, 2005.
- A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Oreilly, 2nd Edition, 2019.
- S. X. Yang and C. H. Li, “A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments”, Ieee Transactions On Evolutionary Computation, 2010.
Multi-Labeling Strategy based on a Heuristic Text Segmentation for Educational Contents: a Case Study for M.E.B. History of Art Book
Year 2022,
Volume: 15 Issue: 2, 139 - 148, 30.04.2022
Selcan Kayahan
,
Korhan Günel
,
Urfat Nuriyev
Abstract
In this study, it is aimed to extract the learning concepts from the educational contents, to segment the context into some overlapped text blocks that have semantic integrity, and to label the paragraphs within the text blocks with multiple learning concepts. The study uses the Art History book taught in schools affiliated to the Republic of Turkey Ministry of National Education. Natural language processing and heuristic clustering techniques are applied on the book and it is aimed to determine which learning concepts are associated with each paragraph of the document. For this purpose, feature vectors representing the parsed text blocks are extracted and the Particle Swarm Optimization clustering technique is applied after applying Principal Component Analysis on the feature vectors. In addition, the segmented text blocks matched with the learning concepts presented by an expert in the book to make a performance analysis of the proposed system. Then, the weighted mean squared error is calculated by comparing expert opinions and system outputs. The obtained results give hope about educational content can be decomposed into text blocks labeled with more than one learning concept.
References
- İnternet: http://www.tdk.gov.tr, 27.04.2021
- B. Ü. Bozkurt, “Kavram, Kavramsallaştırma Yaklaşımları ve Kavram Öğretimi Modelleri: Kuramsal Bir Derleme ve Sözcük Öğretimi Açısından Bir Değerlendirme”, Ankara Üniversitesi Dil Dergisi, 2018.
- R. Luckin and M. Cukurova, “Designing educational technologies in the age of AI: A learning sciences-driven approach”, British Journal of Educational Technology, 50 (6), 2824-2838, 2019. https://doi.org/10.1111/bjet.12861
- A. Renz and R. Hilbig, “Prerequisites for artificial intelligence in further education: identification of drivers, barriers, and business models of educational technology companies”, International Journal of Educational Technology in Higher Education, 17, 14 (2020). https://doi.org/10.1186/s41239-020-00193-3.
- F. Ouyang and P. Jiao, “Artificial intelligence in education: The three paradigms”, Computers and Education: Artificial Intelligence, 2, 100020, 2021.
- X. Zhai et. al, "A Review of Artificial Intelligence (AI) in Education from 2010 to 2020", Complexity. https://doi.org/10.1155/2021/8812542
- V. Nabiyev and A.K. Erümit, Eğitimde Yapay Zeka: Kuramdan Uygulamaya, 2020.
- M. Akdeniz and F. Özdinç , "Eğitimde Yapay Zeka Konusunda Türkiye Adresli Çalışmaların İncelenmesi", Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 912-932, 2021. https://doi.org/10.33711/yyuefd.938734
- S. Burkhardt and S. Kramer, “Online multi-label dependency topic models for text classification”, Mach Learn, 107, 859–886, 2018.
- J. M. Moyano, E.L. Gibaja, K. J. Cios and S. Ventura, “Review of ensembles of multi-label classifiers: Models, experimental study and prospects”, Information Fusion, 44, 33-45, 2018.
- A.N. Tarekegn, M. Giacobini, and K. Michalak, “A review of methods for imbalanced multi-label classification”, Pattern Recognition, 118, 2021.
- L. Liu, J. Kang, J. Yu, and Z. Wang, “A comparative study on unsupervised feature selection methods for text clustering”, In Proc. 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering, 597–601, 2005.
- V. Kumar, A. K. Pujari, V. Padmanaphan, S. K. Sahu, and V. R. Kagita, “Multi-label classification using hierarchical embedding”, Expert System with Application, 91, 263-269, 2018.
- J. Lee, I. Yu, P. Park and D.W. Kim, “Memetic feature selection for multilabel text categorization using label frequency difference”, Information Sciences, 485, 263-280, 2019.
- Z. Yang and G. Liu, “Hierarchical Sequence-to-Sequence Model for Multi-Label Text Classification”, IEEE Access, 7, 153012-153020, 2019.
- N. Aljedani, R. Alotaibi and M. Taileb, “HMATC: Hierarchical multi-label Arabic text classification model using machine learning”, Egyptian Informatics Journal, 2020.
- P. Deepak, K. Visweswariah, N. Wiratunga, and S. Sani, “Two-part segmentation of text documents”, Proceedings of the 21st ACM international conference on Information and knowledge management (CIKM '12), Association for Computing Machinery, New York, NY, USA, 793–802, 2012.
- I. Pak and L. P. Teh, “Text Segmentation Techniques: A Critical Review”, Springer International Publishing, 2017.
- D. Beeferman, A. Berger and J. Lafferty, “Statistical Models for Text Segmentation”, Machine Learning 34, 177–210, 1999.
- H. Oh, S. H. Myaeng, and M. G. Jang, “Semantic passage segmentation based on sentence topics for question answering”, Information Science (Ny), 177, 3696–3717, 2007.
- G. K. Hoon, P. K. Keong and T. E. Kong, “A Semantic Learning Approach for Mapping Unstructured Query to Web Resources”, IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings) (WI'06), 494-497, https://doi.org/10.1109/WI.2006.24, 2006.
- G. K. Hoon and T. C. Wei, “Flexible facets generation for faceted search”, First EAI International Conference on Computer Science Engineering EAI 1–3 Penang: Malaysia, 2017.
- D. Duan, W. Qian and S. Pan, “VISA: A visual sentiment analysis system”, Proceedings 5th International Symposium Visa Information Communicate Interaction— VINCI’12, 22–28, ACM: Hangzhou, 2012.
- C. Q. G. Wentao and C. Scheepers, “Effects of Text Segmentation On Silent Reading Of Chinese Regulated Poems: Evidence From Eye Movements”, The Journal of Chinese Linguistics, 44(2) 265-286, 2017.
- K. Günel, R. Polat and M. Kurt, “Analyzing Learning Concepts in Intelligent Tutoring Systems”, The International Arab Journal of Information Technology, 13(2), 2016.
- B. T. Dinçer and B. Karaoğlan, “Stemming in Agglutinative Languages: A Probabilistic Stemmer for Turkish”, Computer and Information Sciences - ISCIS 2003, 18th International Symposium, Antalya, Turkey, 2003.
- C. Meadow, B. Boyce and D. Kraft, Text Information Retrieval Systems, second ed. Academic Press, 2000.
- M. Bilgin, "Kelime Vektörü Yöntemlerinin Model Oluşturma Sürelerinin Karşılaştırılması", Bilişim Teknolojileri Dergisi, Cilt 12(2), 141 – 146, 2019, doi:10.17671/gazibtd.472226.
- K. Zubrinik, D. Kalpic and M. Milicevic, “The automatic creation of concept maps from documents written using morphologically rich languages”, Expert System with Aplications, 39(16), 12709-12718, 2012.
- C. Manning, P. Raghavan and H. Schütze, “An Introduction to Information Retrieval”, Cambridge University Press, 2009.
- S. Kumova, S. and B. Karaoğlan, “Stop Word Detection as A Binary Classification Problem”, Anadolu University Journal of Science and Technology, 18(2), 346 – 359, 2017.
- R. Aşliyan R., K. Günel and T. Yakhno, Detecting Misspelled Words in Turkish Text Using Syllable n-gram Frequencies, In: Ghosh A., De R.K., Pal S.K. (eds), Pattern Recognition and Machine Intelligence, PReMI 2007, Lecture Notes in Computer Science, 4815, Springer, Berlin, Heidelberg, 2007.
- I. Jolliffe, “Principal Component Analysis”, Encyclopedia of Statistics in Behavioral Science, 648, 2005.
- A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Oreilly, 2nd Edition, 2019.
- S. X. Yang and C. H. Li, “A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments”, Ieee Transactions On Evolutionary Computation, 2010.