Research Article
BibTex RIS Cite

Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi

Year 2018, Volume: 33 Issue: 2, 517 - 528, 06.04.2018
https://doi.org/10.17341/gazimmfd.416360

Abstract

Bu çalışmada, birleştirilmiş kesme mekaniği yaklaşımı ve dik talaş kaldırma sürecinin Lagrangian sınırlarına sahip sonlu eleman (SE) modeliyle küresel uçlu parmak frezeleme kuvvetleri araştırılmıştır. Bu kestirimci yaklaşımı kullanarak frezeleme kuvvetlerini belirlemek için dik talaş kaldırma işleminin iki boyutlu SE modeli hazırlanmıştır. Tungsten karbür takımla 20NiCrMo5 çeliğinin işlenmesinde dik talaş kaldırma çıktılarını tespit etmek için tam çiftlenmiş ısıl-gerilme benzetimleri gerçekleştirilmiştir. Dik talaş kaldırma çıktıları, eğik kesme teorisi uygulanarak helisel kesici takım geometrisine taşınmıştır. Sayısal ve analitik çözümlere dayanarak kesme koşullarının bir aralığı için frezeleme kuvvetleri belirlenmiştir.

References

  • Saffar R.J., Razfar M.R., Zarei O., Ghassemieh E., Simulation of Three-Dimension Cutting Force and Tool Deflection in the End Milling Operation Based on Finite Element Method, Simulation Modelling Practice and Theory, 16, 1677–1688, 2008.
  • Wang B.S., Zuo J.M., Wang M.L., Hou J.M., Prediction of Milling Force Based on Numerical Simulation of Oblique Cutting, Materials and Manufacturing Processes, 27, 1011–1016, 2012.
  • Srinivasa Y.V., Shunmugam M.S., Mechanistic Model for Prediction of Cutting Forces in Micro End-Milling and Experimental Comparison, International Journal of Machine Tools and Manufacture, 67, 18–27, 2013.
  • Aydın M., Uçar M., Cengiz A., Kurt M., Barkın B., A Methodology for Cutting Force Prediction in Side Milling, Materials and Manufacturing Processes, 29, 1429–1435, 2014.
  • Budak E., Altintas Y., Armarego E.J.A., Prediction of Milling Force Coefficients from Orthogonal Cutting Data, ASME Transactions, Journal of Manufacturing Science and Engineering, 118, 216–224, 1996.
  • Lee P., Altıntaş Y., Prediction of Ball-End Milling Forces from Orthogonal Cutting Data, International Journal of Machine Tools and Manufacture, 36, 1059–1072, 1996.
  • Wan M., Pan W.J., Zhang W.H., Ma Y.C., Yang Y., A Unified Instantaneous Cutting Force Model for Flat End Mills with Variable Geometries, Journal of Materials Processing Technology, 214, 641–650, 2014.
  • Aydın M., Dik Kesme İşleminde Kalıcı Gerilmelerin Sonlu Elemanlar Yöntemiyle Modellenmesi, Politeknik Dergisi, 19(3), 297–304, 2016.
  • Miguélez M.H., Soldani X., Molinari A., Analysis of Adiabatic Shear Banding in Orthogonal Cutting of Ti Alloy, International Journal of Mechanical Sciences, 75, 212–222, 2013.
  • Duan C., Zhang L., A Reliable Method for Predicting Serrated Chip Formation in High-Speed Cutting: Analysis and Experimental Verification, International Journal of Advanced Manufacturing Technology, 64, 1587–1597, 2013.
  • Strenkowski J.S., Shih A.J., Lin J.C., An Analytical Finite Element Model for Predicting Three-Dimensional Tool Forces and Chip Flow, International Journal of Machine Tools and Manufacture, 42, 723–731, 2002.
  • Raczy A., Altenhof W.J., Alpas A.T., An Eulerian Finite Element Model of the Metal Cutting Process, Proceedings of the 8th International LS-DYNA Users Conference, Dearborn, MI, USA, 11–26, 2004.
  • Arrazola P.J., Özel T., Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining, International Journal of Mechanical Sciences, 52, 31–42, 2010.
  • Adetoro O.B., Wen P.H., Prediction of Mechanistic Cutting Force Coefficients using ALE Formulation, International Journal of Advanced Manufacturing Technology, 46, 79–90, 2010.
  • Aydın M., Prediction of Cutting Speed Interval of Diamond-Coated Tools with Residual Stress, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2016.1140197, 2016.
  • Stenberg N., Proudian J., Numerical Modelling of Turning to Find Residual Stresses, Procedia CIRP, 8, 258–264, 2013.
  • Iscar Ltd. Ball nose solid carbide end mills. http://www.iscar.com/eCatalog/Grade.aspx?grade=IC08&item. Erişim tarihi Nisan 04, 2016.
  • Johnson G.R., Cook W.H., A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 541–547, 1983.
  • Prasad C.S., FEM Modeling to Verify Residual Stress in Orthogonal Machining, Lap Lambert Academic Publishing, Saarbrücken, 2010.
  • Fu Z., Yang W., Wang X., Leopold J., An Analytical Force Model for Ball-End Milling Based on a Predictive Machining Theory Considering Cutter Runout, International Journal of Advanced Manufacturing Technology, 84, 2449–2460, 2016.
  • Stabler G.V., Fundamental Geometry of Cutting Tools, Proceedings of the Institution of Mechanical Engineers, 165, 14–26, 1951.
  • Ozturk E., Budak E., Modeling of 5-Axis Milling Processes, Machining Science and Technology, 11, 287–311, 2007.
Year 2018, Volume: 33 Issue: 2, 517 - 528, 06.04.2018
https://doi.org/10.17341/gazimmfd.416360

Abstract

References

  • Saffar R.J., Razfar M.R., Zarei O., Ghassemieh E., Simulation of Three-Dimension Cutting Force and Tool Deflection in the End Milling Operation Based on Finite Element Method, Simulation Modelling Practice and Theory, 16, 1677–1688, 2008.
  • Wang B.S., Zuo J.M., Wang M.L., Hou J.M., Prediction of Milling Force Based on Numerical Simulation of Oblique Cutting, Materials and Manufacturing Processes, 27, 1011–1016, 2012.
  • Srinivasa Y.V., Shunmugam M.S., Mechanistic Model for Prediction of Cutting Forces in Micro End-Milling and Experimental Comparison, International Journal of Machine Tools and Manufacture, 67, 18–27, 2013.
  • Aydın M., Uçar M., Cengiz A., Kurt M., Barkın B., A Methodology for Cutting Force Prediction in Side Milling, Materials and Manufacturing Processes, 29, 1429–1435, 2014.
  • Budak E., Altintas Y., Armarego E.J.A., Prediction of Milling Force Coefficients from Orthogonal Cutting Data, ASME Transactions, Journal of Manufacturing Science and Engineering, 118, 216–224, 1996.
  • Lee P., Altıntaş Y., Prediction of Ball-End Milling Forces from Orthogonal Cutting Data, International Journal of Machine Tools and Manufacture, 36, 1059–1072, 1996.
  • Wan M., Pan W.J., Zhang W.H., Ma Y.C., Yang Y., A Unified Instantaneous Cutting Force Model for Flat End Mills with Variable Geometries, Journal of Materials Processing Technology, 214, 641–650, 2014.
  • Aydın M., Dik Kesme İşleminde Kalıcı Gerilmelerin Sonlu Elemanlar Yöntemiyle Modellenmesi, Politeknik Dergisi, 19(3), 297–304, 2016.
  • Miguélez M.H., Soldani X., Molinari A., Analysis of Adiabatic Shear Banding in Orthogonal Cutting of Ti Alloy, International Journal of Mechanical Sciences, 75, 212–222, 2013.
  • Duan C., Zhang L., A Reliable Method for Predicting Serrated Chip Formation in High-Speed Cutting: Analysis and Experimental Verification, International Journal of Advanced Manufacturing Technology, 64, 1587–1597, 2013.
  • Strenkowski J.S., Shih A.J., Lin J.C., An Analytical Finite Element Model for Predicting Three-Dimensional Tool Forces and Chip Flow, International Journal of Machine Tools and Manufacture, 42, 723–731, 2002.
  • Raczy A., Altenhof W.J., Alpas A.T., An Eulerian Finite Element Model of the Metal Cutting Process, Proceedings of the 8th International LS-DYNA Users Conference, Dearborn, MI, USA, 11–26, 2004.
  • Arrazola P.J., Özel T., Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining, International Journal of Mechanical Sciences, 52, 31–42, 2010.
  • Adetoro O.B., Wen P.H., Prediction of Mechanistic Cutting Force Coefficients using ALE Formulation, International Journal of Advanced Manufacturing Technology, 46, 79–90, 2010.
  • Aydın M., Prediction of Cutting Speed Interval of Diamond-Coated Tools with Residual Stress, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2016.1140197, 2016.
  • Stenberg N., Proudian J., Numerical Modelling of Turning to Find Residual Stresses, Procedia CIRP, 8, 258–264, 2013.
  • Iscar Ltd. Ball nose solid carbide end mills. http://www.iscar.com/eCatalog/Grade.aspx?grade=IC08&item. Erişim tarihi Nisan 04, 2016.
  • Johnson G.R., Cook W.H., A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 541–547, 1983.
  • Prasad C.S., FEM Modeling to Verify Residual Stress in Orthogonal Machining, Lap Lambert Academic Publishing, Saarbrücken, 2010.
  • Fu Z., Yang W., Wang X., Leopold J., An Analytical Force Model for Ball-End Milling Based on a Predictive Machining Theory Considering Cutter Runout, International Journal of Advanced Manufacturing Technology, 84, 2449–2460, 2016.
  • Stabler G.V., Fundamental Geometry of Cutting Tools, Proceedings of the Institution of Mechanical Engineers, 165, 14–26, 1951.
  • Ozturk E., Budak E., Modeling of 5-Axis Milling Processes, Machining Science and Technology, 11, 287–311, 2007.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Aydın 0000-0003-1126-0601

Uğur Köklü 0000-0002-9205-9768

Publication Date April 6, 2018
Submission Date November 14, 2016
Acceptance Date March 20, 17
Published in Issue Year 2018 Volume: 33 Issue: 2

Cite

APA Aydın, M., & Köklü, U. (2018). Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(2), 517-528. https://doi.org/10.17341/gazimmfd.416360
AMA Aydın M, Köklü U. Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi. GUMMFD. June 2018;33(2):517-528. doi:10.17341/gazimmfd.416360
Chicago Aydın, Mehmet, and Uğur Köklü. “Dik Kesme işleminin Lagrangian sınırlı Sonlu Eleman Modeliyle küresel Parmak Frezeleme Kuvvetlerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, no. 2 (June 2018): 517-28. https://doi.org/10.17341/gazimmfd.416360.
EndNote Aydın M, Köklü U (June 1, 2018) Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 2 517–528.
IEEE M. Aydın and U. Köklü, “Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi”, GUMMFD, vol. 33, no. 2, pp. 517–528, 2018, doi: 10.17341/gazimmfd.416360.
ISNAD Aydın, Mehmet - Köklü, Uğur. “Dik Kesme işleminin Lagrangian sınırlı Sonlu Eleman Modeliyle küresel Parmak Frezeleme Kuvvetlerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/2 (June 2018), 517-528. https://doi.org/10.17341/gazimmfd.416360.
JAMA Aydın M, Köklü U. Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi. GUMMFD. 2018;33:517–528.
MLA Aydın, Mehmet and Uğur Köklü. “Dik Kesme işleminin Lagrangian sınırlı Sonlu Eleman Modeliyle küresel Parmak Frezeleme Kuvvetlerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, no. 2, 2018, pp. 517-28, doi:10.17341/gazimmfd.416360.
Vancouver Aydın M, Köklü U. Dik kesme işleminin Lagrangian sınırlı sonlu eleman modeliyle küresel parmak frezeleme kuvvetlerinin incelenmesi. GUMMFD. 2018;33(2):517-28.