BibTex RIS Cite

Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması

Year 2018, Volume: 33 Issue: 4, 1347 - 1354, 19.12.2018
https://doi.org/10.17341/gazimmfd.416432

Abstract

Perovskit güneş pillerinde kullanılan mimari pil performans değerlerini doğrudan etkilemektedir. Bu çalışmada perovskit güneş pilleri düzlemsel ve mesoyapılı mimaride CH3NH3PbI3 perovskit yapısı kullanılarak üretilmiş ve pil performansın mimariye bağımlılığı detaylı olarak incelenmiştir. Deneysel çalışmalarda tüm üretim basamakları açıkça ve detaylı olarak verilmiş, ideal perovskit yapısının özellikleri belirtilmiştir. Sonuç olarak mesoyapılı mimaride perovskit yapısı oluşumunun daha zor olmasına rağmen ışık soğurma ve pil performans değerlerinin daha iyi olduğu görülmüştür. 20,08 mA/cm2 kısa devre akısı, 1,06 V açık devre gerilimi ve  % 15,08 verim değeri ile mesoyapılı perovskit güneş pili en yüksek performansı göstermiştir.

References

  • E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite, J. Phys. Chem. Lett., 4, 6, 897–902, 2013.
  • W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang, and Y. Yan, Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers, J. Mater. Chem. A, 3, 47, 23888–23894, 2015.
  • H.-S. Kim et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep., 2, 012.
  • M. Saliba et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 6, 1989–1997, 2016.
  • T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, and Y. M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance, J. Mater. Chem. A, 3, 17, 8943–8969, 2015.
  • P. Piatkowski et al., Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells, Phys. Chem. Chem. Phys., 17, 22, 14674–14684, 2015.
  • M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 338, 6107, 643–647, 2012.
  • A. Listorti et al., Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells, J. Phys. Chem. Lett., 6, 9, 1628–1637, 2015.
  • J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 7458, 316–319, 2013.
  • S. D. Stranks et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342, 6156, 341–344, 2013.
  • E. Edri et al., Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor), Nano Lett., 14, 2, 1000–
  • , 2014.
  • Y. Shi et al., CH3NH3PbI3 and CH3NH3PbI3–xClx in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture, J. Phys. Chem. C, 119, 28, 15868–15873, 2015.
  • M. R. Ahmadian-Yazdi, F. Zabihi, M. Habibi, and M. Eslamian, Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating, Nanoscale Res. Lett., 11, 2016.
  • K. Kara et al., Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells, RSC Adv., 6, 32, 26606–26611, 2016.
  • Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer, J. Mater. Chem. A, 2, 34, 13827–13830, 2014.
  • F. K. Aldibaja, L. Badia, E. Mas-Marzá, R. S. Sánchez, E. M. Barea, and I. Mora-Sero, Effect of different lead precursors on perovskite solar cell performance and stability, J. Mater. Chem. A, 3, 17, 9194–9200, 2015.
  • Y. Wu et al., Consecutive Morphology Controlling Operations for Highly Reproducible Mesostructured Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 7, 37, 20707–20713, 2015.
  • T. Baikie et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, J. Mater. Chem. A, 1, 18, 5628–5641, 2013.
Year 2018, Volume: 33 Issue: 4, 1347 - 1354, 19.12.2018
https://doi.org/10.17341/gazimmfd.416432

Abstract

References

  • E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite, J. Phys. Chem. Lett., 4, 6, 897–902, 2013.
  • W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang, and Y. Yan, Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers, J. Mater. Chem. A, 3, 47, 23888–23894, 2015.
  • H.-S. Kim et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep., 2, 012.
  • M. Saliba et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 6, 1989–1997, 2016.
  • T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, and Y. M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance, J. Mater. Chem. A, 3, 17, 8943–8969, 2015.
  • P. Piatkowski et al., Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells, Phys. Chem. Chem. Phys., 17, 22, 14674–14684, 2015.
  • M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 338, 6107, 643–647, 2012.
  • A. Listorti et al., Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells, J. Phys. Chem. Lett., 6, 9, 1628–1637, 2015.
  • J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 7458, 316–319, 2013.
  • S. D. Stranks et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342, 6156, 341–344, 2013.
  • E. Edri et al., Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor), Nano Lett., 14, 2, 1000–
  • , 2014.
  • Y. Shi et al., CH3NH3PbI3 and CH3NH3PbI3–xClx in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture, J. Phys. Chem. C, 119, 28, 15868–15873, 2015.
  • M. R. Ahmadian-Yazdi, F. Zabihi, M. Habibi, and M. Eslamian, Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating, Nanoscale Res. Lett., 11, 2016.
  • K. Kara et al., Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells, RSC Adv., 6, 32, 26606–26611, 2016.
  • Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer, J. Mater. Chem. A, 2, 34, 13827–13830, 2014.
  • F. K. Aldibaja, L. Badia, E. Mas-Marzá, R. S. Sánchez, E. M. Barea, and I. Mora-Sero, Effect of different lead precursors on perovskite solar cell performance and stability, J. Mater. Chem. A, 3, 17, 9194–9200, 2015.
  • Y. Wu et al., Consecutive Morphology Controlling Operations for Highly Reproducible Mesostructured Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 7, 37, 20707–20713, 2015.
  • T. Baikie et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, J. Mater. Chem. A, 1, 18, 5628–5641, 2013.
There are 19 citations in total.

Details

Journal Section Makaleler
Authors

Ali Kılıç

Mehmet Durmuş Çalışır This is me

Publication Date December 19, 2018
Submission Date March 8, 2017
Published in Issue Year 2018 Volume: 33 Issue: 4

Cite

APA Kılıç, A., & Çalışır, M. D. (2018). Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(4), 1347-1354. https://doi.org/10.17341/gazimmfd.416432
AMA Kılıç A, Çalışır MD. Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması. GUMMFD. December 2018;33(4):1347-1354. doi:10.17341/gazimmfd.416432
Chicago Kılıç, Ali, and Mehmet Durmuş Çalışır. “Düzlemsel Ve mesoyapılı Perovskit güneş Pillerinin Performans açısından karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, no. 4 (December 2018): 1347-54. https://doi.org/10.17341/gazimmfd.416432.
EndNote Kılıç A, Çalışır MD (December 1, 2018) Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 4 1347–1354.
IEEE A. Kılıç and M. D. Çalışır, “Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması”, GUMMFD, vol. 33, no. 4, pp. 1347–1354, 2018, doi: 10.17341/gazimmfd.416432.
ISNAD Kılıç, Ali - Çalışır, Mehmet Durmuş. “Düzlemsel Ve mesoyapılı Perovskit güneş Pillerinin Performans açısından karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/4 (December 2018), 1347-1354. https://doi.org/10.17341/gazimmfd.416432.
JAMA Kılıç A, Çalışır MD. Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması. GUMMFD. 2018;33:1347–1354.
MLA Kılıç, Ali and Mehmet Durmuş Çalışır. “Düzlemsel Ve mesoyapılı Perovskit güneş Pillerinin Performans açısından karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, no. 4, 2018, pp. 1347-54, doi:10.17341/gazimmfd.416432.
Vancouver Kılıç A, Çalışır MD. Düzlemsel ve mesoyapılı perovskit güneş pillerinin performans açısından karşılaştırılması. GUMMFD. 2018;33(4):1347-54.