Review
BibTex RIS Cite

Zift esaslı karbon fiber üretimi

Year 2018, Volume: 33 Issue: 4, 1433 - 1444, 19.12.2018
https://doi.org/10.17341/gazimmfd.416440

Abstract

Benzersiz fiziksel, kimyasal ve biyolojik özelliklere sahip olan karbon fiber, hekzagonal yapıda dizilmiş karbon atomlarından oluşan lif şeklinde çok yönlü bir malzemedir.  Günden güne potansiyel uygulama alanları gelişmekte olan karbon fiberlerin endüstriyel üretiminde genel olarak PAN (poliakrilonitril) kullanılmaktadır. Ancak, PAN esaslı karbon fiber üretiminin mevcut olan üretim teknolojileri, ürün maliyetinin azaltılmasını sağlayamamaktadır. Pazar payı PAN’a oranla daha az olan zift esaslı karbon fiber üretimi ile, PAN esaslı karbon fiberlere göre daha ucuz ve daha yüksek verimlerle karbon fiber üretimi mümkündür. Günümüzde, farklı kaynaklardan sentezlenebilecek izotropik ve mezofaz ziftlerden karbon fiber eldesi, üretim süreçlerinin ve son ürün özelliklerinin geliştirilmesi üzerine birçok çalışma yürütülmektedir. Bu çalışmada, zift esaslı karbon fiber üretimi hakkında bir literatür taraması yapılarak,  üretim süreçleri incelenmiştir.

References

  • Hull, D., & Clyne, T. W. (1981). An Introduction to Composite Materials, Cambridge University Press. Macmillan, New York.
  • http://www.rnrmarketresearch.com/global-and-china-carbon-fiber industry-report-2014-2017-market-report.html (Erişim tarihi 15.02.2016).
  • http://www.statista.com/statistics/380549/leading-countries-by-carbon-fiber-production-capacity/ (Erişim tarihi: 20.09.2016)
  • Roberts, T. (2011). „The Carbon Fiber Industry worldwide 2011-2020,“. Materials Technology Publications, Watford, 6, 29.
  • Warren, C. D. (2011). Low cost carbon fiber overview. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
  • Özsin G. (2017) Farklı Organik Atıklardan Zift Esaslı Karbon Fiber Üretimi Ve Karakterizasyonu, Doktora tezi, Eskişehir: Anadolu Üniversitesi.
  • Park, S. J. (2015). Carbon fibers. Springer.
  • Oya, A., & Kasahara, N. (2000). Preparation of thin carbon fibers from phenol–formaldehyde polymer micro-beads dispersed in polyethylene matrix. Carbon, 38(8), 1141-1144.
  • Hulicova, D., & Oya, A. (2003). The polymer blend technique as a method for designing fine carbon materials. Carbon, 41(7), 1443-1450.
  • Imel, A. E., Naskar, A. K., & Dadmun, M. D. (2016). Understanding the Impact of Poly (ethylene oxide) on the Assembly of Lignin in Solution toward Improved Carbon Fiber Production. ACS applied materials & interfaces, 8(5), 3200-3207.
  • Nar, M., Rizvi, H. R., Dixon, R. A., Chen, F., Kovalcik, A., & D'Souza, N. (2016). Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon, 103, 372-383.
  • Mavinkurve, A., Visser, S., & Pennings, A. J. (1995). An initial evaluation of poly (vinylacetylene) as a carbon fiber precursor. Carbon, 33(6), 757-761.
  • Guo, Z., Liu, Z., Ye, L., Ge, K., & Zhao, T. (2015). The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer. Materials Letters, 142, 49-51.
  • Bayat, N., Rezaei, M., & Meshkani, F. (2016). Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni–Pd/Al 2 O 3 catalyst. International Journal of Hydrogen Energy, 41(12), 5494-5503.
  • Zhang, D., & Sun, Q. (1996). Structure and properties development during the conversion of polyethylene precursors to carbon fibers. Journal of applied polymer science, 62(2), 367-373.
  • Krumpfer, J. W., Giebel, E., Frank, E., Mueller, A., Ackermann, L. M., Tironi, C. N., ... & Müllen, K. (2016). Poly (methyl vinyl ketone) as a Potential Carbon Fiber Precursor. Chemistry of Materials.
  • Zhang, J., Terrones, M., Park, C. R., Mukherjee, R., Monthioux, M., Koratkar, N., ... & Chen, Y. (2016). Carbon science in 2016: status, challenges and perspectives. Carbon, 98(70), 708-732.
  • Inagaki, M., & Kang, F. (2014). Materials science and engineering of carbon: fundamentals. Butterworth-Heinemann
  • Somiya, S. (2013). Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press.
  • Kelly, A., & Zweben, C. H. (2000). Comprehensive composite materials. Elsevier.
  • Riggs, D. M., Shuford, R. J., & Lewis, R. W. (1982). Graphite fibers and composites. In Handbook of composites (pp. 196-271). Springer US.
  • Zander, M. (1987). On the composition of pitches. Fuel, 66(11), 1536-1539.
  • Almugerhıy, A.A. (1998). Preperation and Characterization of Göynük Oil Shale Derived Pitch Precursors For Production of Carbon Matarials, Doktora Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • El-Akrami, H.A. (1998). Preparation and Characterization of Avgamasya Asphaltite and Raman-Dinçer Crude Oil Derived Pitches For Production of Stabilized Fiber. Doktora Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • Gül, A. (2005). Mesophase Pitch Derived Graphitic Carbon Foam. Yüksek Lisans Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • Özel, M. Z., & Bartle, K. D. (2002). Production of mesophase pitch from coal tar and petroleum pitches using supercritical fluid extraction. Turkish Journal of Chemistry, 26(3), 417-424.
  • Brooks, J. D., & Taylor, G. H. (1965). The formation of graphitizing carbons from the liquid phase. Carbon, 3(2)
  • Ekşilioğlu, A. (2004). Effect Of Temperature, Solvent Type and Additives On The Properties of Mesophase Pitch Based Carbon Foam. Yüksek Lisans Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • Kim B.J. (2014). Study of Isotropic Pitch Based Carbon Fiber for Automotive Body. Doktora Tezi, Fukuoka:Kyuhu University.
  • Figueiredo, J. L., Bernardo, C., Baker, R. T. K., & Hüttinger, K. J. (Eds.). (2013). Carbon fibers filaments and composites (Vol. 177). Springer Science & Business Media.
  • Kumar, S., & Srivastava, M. (2015). Mesophase formation behavior in petroleum residues. Carbon Lett, 16(3), 171-182.
  • Mochida, I., Korai, Y., Ku, C. H., Watanabe, F., & Sakai, Y. (2000). Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon, 38(2), 305-328.
  • Marsh, H., Martı́nez-Escandell, M., & Rodrı́guez-Reinoso, F. (1999). Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon, 37(3), 363-390.
  • Fitzgerald, R. L. (2000) Novel Applications of Carbon Fiber for Hot Mix Asphalt Reinforcement and Carbon-Carbon Pre-forms, Yüksek Lisans Tezi, Michigan, Michigan Technological University.
  • Peebles Jr, L. H. (1995). Carbon fibers, formation, structure and properties. CRC Press, Inc, 2000 Corporate Blvd, NW, Boca Raton, FL 33431, USA, 1995. 224.
  • Hamada, T., Furuyama, M., Sajiki, Y., Tomioka, T., & Endo, M. (1990). Preferred orientation of pitch precursor fibers. Journal of Materials Research, 5(06), 1271-1280.
  • Yoon, S. H., Korai, Y., & Mochida, I. (1993). Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF/BF3. Carbon, 31(6), 849-856.
  • Díez, N., Álvarez, P., Santamaría, R., Blanco, C., Menéndez, R., & Granda, M. (2012). Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel processing technology, 93(1), 99-104.
  • Matsumoto, T., & Mochida, I. (1992). A structural study on oxidative stabilization of mesophase pitch fibers derived from coaltar. Carbon, 30(7), 1041-1046.
  • Mochida, I., Toshima, H., Korai, Y., & Hino, T. (1989). Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. Journal of materials science, 24(2), 389-394.
  • Mochida, I., Toshima, H., Korai, Y., & Matsumoto, T. (1989). Control of molecular orientations in mesophase pitch-based carbon fibre by blending PVC pitch. Journal of materials science, 24(1), 57-62.
  • Matsumoto, T., & Mochida, I. (1993). Oxygen distribution in oxidatively stabilized mesophase pitch fiber. Carbon, 31(1), 143-147.
  • Tekinalp, H. (2011). Pitch Based Carbon Fibers: The Effect of Precursor Composition on Pore Structure. Doktora Tezi, South Carolina: Clemson University.
  • Edie, D. D. (1998). The effect of processing on the structure and properties of carbon fibers. Carbon, 36(4), 345-362.
  • Yang, C. Q., & Simms, J. R. (1993). Infrared spectroscopy studies of the petroleum pitch carbon fiber—I. The raw materials, the stabilization, and carbonization processes. Carbon, 31(3), 451-459.
  • Wu, X., Gallego, N. C., Contescu, C. I., Tekinalp, H., Bhat, V. V., Baker, F. S., & Thies, M. C. (2008). The effect of processing conditions on microstructure of Pd-containing activated carbon fibers. Carbon, 46(1), 54-61.
  • Woodhead, A. L., de Souza, M. L., & Church, J. S. (2016). An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Applied Surface Science.
  • Jung, M. J., Park, M. S., Lee, S., & Lee, Y. S. (2016). Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers. Applied Chemistry for Engineering, 27(3), 319-324.
  • Fukunaga, A., & Ueda, S. (2000). Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Composites science and technology, 60(2), 249-254.
  • Yumitori, S., & Nakanishi, Y. (1996). Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix: Part 1. Comparison between H2SO4 and NaOH solutions. Composites Part A: Applied Science and Manufacturing, 27(11), 1051-1058.
  • Li, X., Zhu, X. Q., Okuda, K., Zhang, Z., Ashida, R., Yao, H., & Miura, K. (2017). Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction. New Carbon Materials, 32(1), 41-47.
  • Yang, J., Nakabayashi, K., Miyawaki, J., & Yoon, S. H. (2016). Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. Journal of Industrial and Engineering Chemistry, 34, 397-404.
  • Kim, M. S., Lee, D. H., Kim, C. H., Lee, Y. J., Hwang, J. Y., Yang, C. M., ... & Yang, K. S. (2015). Shell–core structured carbon fibers via melt spinning of petroleum-and wood-processing waste blends. Carbon, 85, 194-200.
  • Yang, J. X., Nakabayashi, K., Miyawaki, J., & Yoon, S. H. (2017). Preparation of isotropic spinnable pitch and carbon fiber by the bromination-dehydrobromination of biotar and ethylene bottom oil mixture. Journal of materials science, 52(2), 1165-1171.
  • Naskar, A. K., Akato, K. M., Tran, C. D., Paul, R. M., & Dai, X. (2017). Low cost bio-based carbon fiber for high temperature processing (No. ORNL/TM-2017/83). Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Carbon Fiber Technology Facility (CFTF).
  • Prauchner, M. J., Pasa, V., Otani, C., Otani, S., & de Menezes, S. (2004). Eucalyptus tar pitch pretreatment for carbon material processing. Journal of applied polymer science, 91(3), 1604-1611.
  • Prauchner, M. J., Pasa, V. M. D., Otani, S., & Otani, C. (2005). Biopitch-based general purpose carbon fibers: Processing and properties. Carbon, 43(3), 591-597.
  • Ma, X., & Zhao, G. (2011). Variations in the microstructure of carbon fibers prepared from liquefied wood during carbonization. Journal of Applied Polymer Science, 121(6), 3525-3530.
  • Kim, B. J., Kotegawa, T., Eom, Y., An, J., Hong, I. P., Kato, O., ... & Yoon, S. H. (2016). Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon, 99, 649-657.
  • Jang, S. Y., Ko, S., Jeon, Y. P., Choi, J., Kang, N., Kim, H. C., ... & Lee, S. (2017). Evaluating the stabilization of isotropic pitch fibers for optimal tensile properties of carbon fibers. Journal of Industrial and Engineering Chemistry, 45, 316-322.
  • Govorov, A., Galiguzov, A., Tikhonov, N., Malakho, A., & Rogozin, A. (2016). Study of Different Types of Carbon Fiber Oxidation Kinetics. Refractories & Industrial Ceramics, 56(6).
  • Jung, M. J., Park, M. S., Lee, S., & Lee, Y. S. (2016). Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers. Applied Chemistry for Engineering, 27(3), 319-324.
  • Ko, S., Choi, J. E., Lee, C. W., & Jeon, Y. P. (2017). Modified oxidative thermal treatment for the preparation of isotropic pitch towards cost-competitive carbon fiber. Journal of Industrial and Engineering Chemistry.
  • Yue, Z., Liu, C., & Vakili, A. (2017). Solvated mesophase pitch-based carbon fibers: thermal-oxidative stabilization of the spun fiber. Journal of Materials Science, 13(52), 8176-8187.
  • Kim, J. D., Roh, J. S., & Kim, M. S. (2017). Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber. Carbon Lett, 21, 51-60.
  • Naito, K. (2016). Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile-and Pitch-Based Carbon Fibers. Journal of Materials Engineering & Performance, 25(5).
  • Bhagat, A. R., & Mahajan, P. (2016). Characterization and damage evaluation of coal tar pitch carbon matrix used in Carbon/Carbon composites. Journal of Materials Engineering and Performance, 9(25), 3904-3911.
  • Lee, H. M., Kwac, L. K., An, K. H., Park, S. J., & Kim, B. J. (2016). Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors. Energy Conversion and Management, 125, 347-352.
  • Asano, K. (2017). Thermal expansion behaviour of squeeze-cast aluminium matrix composites reinforced with PAN-and Pitch-based carbon fibres. International Journal of Cast Metals Research, 1-9.
  • Martin, A., Addiego, F., Mertz, G., Bardon, J., & Ruch, D. (2016). Pitch-Based Carbon Fibre-Reinforced PEEK Composites: Optimization of Interphase Properties by Water-Based Treatments and Self-Assembly. J Material Sci Eng, 6(308), 2169-0022.
  • Dong, J., Jia, C., Wang, M., Fang, X., Wei, H., Xie, H., ... & Huang, Y. (2017). Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Composites Science and Technology.
  • Yuan, G., Li, X., Dong, Z., Xiong, X., Rand, B., Cui, Z., ... & Wang, J. (2014). Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon, 68, 413-425.
  • Noh, Y. J., & Kim, S. Y. (2015). Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polymer Testing, 45, 132-138.
  • Mun, S. Y., Lim, H. M., & Lee, D. J. (2015). Thermal conductivity of a silicon carbide/pitch-based carbon fiber-epoxy composite. Thermochimica Acta, 619, 16-19.
  • Diez, N., Díaz, P., Álvarez, P., González, Z., Granda, M., Blanco, C., ... & Menéndez, R. (2014). Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. Materials Letters, 136, 214-217.
Year 2018, Volume: 33 Issue: 4, 1433 - 1444, 19.12.2018
https://doi.org/10.17341/gazimmfd.416440

Abstract

References

  • Hull, D., & Clyne, T. W. (1981). An Introduction to Composite Materials, Cambridge University Press. Macmillan, New York.
  • http://www.rnrmarketresearch.com/global-and-china-carbon-fiber industry-report-2014-2017-market-report.html (Erişim tarihi 15.02.2016).
  • http://www.statista.com/statistics/380549/leading-countries-by-carbon-fiber-production-capacity/ (Erişim tarihi: 20.09.2016)
  • Roberts, T. (2011). „The Carbon Fiber Industry worldwide 2011-2020,“. Materials Technology Publications, Watford, 6, 29.
  • Warren, C. D. (2011). Low cost carbon fiber overview. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
  • Özsin G. (2017) Farklı Organik Atıklardan Zift Esaslı Karbon Fiber Üretimi Ve Karakterizasyonu, Doktora tezi, Eskişehir: Anadolu Üniversitesi.
  • Park, S. J. (2015). Carbon fibers. Springer.
  • Oya, A., & Kasahara, N. (2000). Preparation of thin carbon fibers from phenol–formaldehyde polymer micro-beads dispersed in polyethylene matrix. Carbon, 38(8), 1141-1144.
  • Hulicova, D., & Oya, A. (2003). The polymer blend technique as a method for designing fine carbon materials. Carbon, 41(7), 1443-1450.
  • Imel, A. E., Naskar, A. K., & Dadmun, M. D. (2016). Understanding the Impact of Poly (ethylene oxide) on the Assembly of Lignin in Solution toward Improved Carbon Fiber Production. ACS applied materials & interfaces, 8(5), 3200-3207.
  • Nar, M., Rizvi, H. R., Dixon, R. A., Chen, F., Kovalcik, A., & D'Souza, N. (2016). Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon, 103, 372-383.
  • Mavinkurve, A., Visser, S., & Pennings, A. J. (1995). An initial evaluation of poly (vinylacetylene) as a carbon fiber precursor. Carbon, 33(6), 757-761.
  • Guo, Z., Liu, Z., Ye, L., Ge, K., & Zhao, T. (2015). The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer. Materials Letters, 142, 49-51.
  • Bayat, N., Rezaei, M., & Meshkani, F. (2016). Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni–Pd/Al 2 O 3 catalyst. International Journal of Hydrogen Energy, 41(12), 5494-5503.
  • Zhang, D., & Sun, Q. (1996). Structure and properties development during the conversion of polyethylene precursors to carbon fibers. Journal of applied polymer science, 62(2), 367-373.
  • Krumpfer, J. W., Giebel, E., Frank, E., Mueller, A., Ackermann, L. M., Tironi, C. N., ... & Müllen, K. (2016). Poly (methyl vinyl ketone) as a Potential Carbon Fiber Precursor. Chemistry of Materials.
  • Zhang, J., Terrones, M., Park, C. R., Mukherjee, R., Monthioux, M., Koratkar, N., ... & Chen, Y. (2016). Carbon science in 2016: status, challenges and perspectives. Carbon, 98(70), 708-732.
  • Inagaki, M., & Kang, F. (2014). Materials science and engineering of carbon: fundamentals. Butterworth-Heinemann
  • Somiya, S. (2013). Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press.
  • Kelly, A., & Zweben, C. H. (2000). Comprehensive composite materials. Elsevier.
  • Riggs, D. M., Shuford, R. J., & Lewis, R. W. (1982). Graphite fibers and composites. In Handbook of composites (pp. 196-271). Springer US.
  • Zander, M. (1987). On the composition of pitches. Fuel, 66(11), 1536-1539.
  • Almugerhıy, A.A. (1998). Preperation and Characterization of Göynük Oil Shale Derived Pitch Precursors For Production of Carbon Matarials, Doktora Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • El-Akrami, H.A. (1998). Preparation and Characterization of Avgamasya Asphaltite and Raman-Dinçer Crude Oil Derived Pitches For Production of Stabilized Fiber. Doktora Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • Gül, A. (2005). Mesophase Pitch Derived Graphitic Carbon Foam. Yüksek Lisans Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • Özel, M. Z., & Bartle, K. D. (2002). Production of mesophase pitch from coal tar and petroleum pitches using supercritical fluid extraction. Turkish Journal of Chemistry, 26(3), 417-424.
  • Brooks, J. D., & Taylor, G. H. (1965). The formation of graphitizing carbons from the liquid phase. Carbon, 3(2)
  • Ekşilioğlu, A. (2004). Effect Of Temperature, Solvent Type and Additives On The Properties of Mesophase Pitch Based Carbon Foam. Yüksek Lisans Tezi, İstanbul: İstanbul Teknik Üniversitesi.
  • Kim B.J. (2014). Study of Isotropic Pitch Based Carbon Fiber for Automotive Body. Doktora Tezi, Fukuoka:Kyuhu University.
  • Figueiredo, J. L., Bernardo, C., Baker, R. T. K., & Hüttinger, K. J. (Eds.). (2013). Carbon fibers filaments and composites (Vol. 177). Springer Science & Business Media.
  • Kumar, S., & Srivastava, M. (2015). Mesophase formation behavior in petroleum residues. Carbon Lett, 16(3), 171-182.
  • Mochida, I., Korai, Y., Ku, C. H., Watanabe, F., & Sakai, Y. (2000). Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon, 38(2), 305-328.
  • Marsh, H., Martı́nez-Escandell, M., & Rodrı́guez-Reinoso, F. (1999). Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon, 37(3), 363-390.
  • Fitzgerald, R. L. (2000) Novel Applications of Carbon Fiber for Hot Mix Asphalt Reinforcement and Carbon-Carbon Pre-forms, Yüksek Lisans Tezi, Michigan, Michigan Technological University.
  • Peebles Jr, L. H. (1995). Carbon fibers, formation, structure and properties. CRC Press, Inc, 2000 Corporate Blvd, NW, Boca Raton, FL 33431, USA, 1995. 224.
  • Hamada, T., Furuyama, M., Sajiki, Y., Tomioka, T., & Endo, M. (1990). Preferred orientation of pitch precursor fibers. Journal of Materials Research, 5(06), 1271-1280.
  • Yoon, S. H., Korai, Y., & Mochida, I. (1993). Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF/BF3. Carbon, 31(6), 849-856.
  • Díez, N., Álvarez, P., Santamaría, R., Blanco, C., Menéndez, R., & Granda, M. (2012). Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel processing technology, 93(1), 99-104.
  • Matsumoto, T., & Mochida, I. (1992). A structural study on oxidative stabilization of mesophase pitch fibers derived from coaltar. Carbon, 30(7), 1041-1046.
  • Mochida, I., Toshima, H., Korai, Y., & Hino, T. (1989). Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. Journal of materials science, 24(2), 389-394.
  • Mochida, I., Toshima, H., Korai, Y., & Matsumoto, T. (1989). Control of molecular orientations in mesophase pitch-based carbon fibre by blending PVC pitch. Journal of materials science, 24(1), 57-62.
  • Matsumoto, T., & Mochida, I. (1993). Oxygen distribution in oxidatively stabilized mesophase pitch fiber. Carbon, 31(1), 143-147.
  • Tekinalp, H. (2011). Pitch Based Carbon Fibers: The Effect of Precursor Composition on Pore Structure. Doktora Tezi, South Carolina: Clemson University.
  • Edie, D. D. (1998). The effect of processing on the structure and properties of carbon fibers. Carbon, 36(4), 345-362.
  • Yang, C. Q., & Simms, J. R. (1993). Infrared spectroscopy studies of the petroleum pitch carbon fiber—I. The raw materials, the stabilization, and carbonization processes. Carbon, 31(3), 451-459.
  • Wu, X., Gallego, N. C., Contescu, C. I., Tekinalp, H., Bhat, V. V., Baker, F. S., & Thies, M. C. (2008). The effect of processing conditions on microstructure of Pd-containing activated carbon fibers. Carbon, 46(1), 54-61.
  • Woodhead, A. L., de Souza, M. L., & Church, J. S. (2016). An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Applied Surface Science.
  • Jung, M. J., Park, M. S., Lee, S., & Lee, Y. S. (2016). Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers. Applied Chemistry for Engineering, 27(3), 319-324.
  • Fukunaga, A., & Ueda, S. (2000). Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Composites science and technology, 60(2), 249-254.
  • Yumitori, S., & Nakanishi, Y. (1996). Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix: Part 1. Comparison between H2SO4 and NaOH solutions. Composites Part A: Applied Science and Manufacturing, 27(11), 1051-1058.
  • Li, X., Zhu, X. Q., Okuda, K., Zhang, Z., Ashida, R., Yao, H., & Miura, K. (2017). Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction. New Carbon Materials, 32(1), 41-47.
  • Yang, J., Nakabayashi, K., Miyawaki, J., & Yoon, S. H. (2016). Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. Journal of Industrial and Engineering Chemistry, 34, 397-404.
  • Kim, M. S., Lee, D. H., Kim, C. H., Lee, Y. J., Hwang, J. Y., Yang, C. M., ... & Yang, K. S. (2015). Shell–core structured carbon fibers via melt spinning of petroleum-and wood-processing waste blends. Carbon, 85, 194-200.
  • Yang, J. X., Nakabayashi, K., Miyawaki, J., & Yoon, S. H. (2017). Preparation of isotropic spinnable pitch and carbon fiber by the bromination-dehydrobromination of biotar and ethylene bottom oil mixture. Journal of materials science, 52(2), 1165-1171.
  • Naskar, A. K., Akato, K. M., Tran, C. D., Paul, R. M., & Dai, X. (2017). Low cost bio-based carbon fiber for high temperature processing (No. ORNL/TM-2017/83). Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Carbon Fiber Technology Facility (CFTF).
  • Prauchner, M. J., Pasa, V., Otani, C., Otani, S., & de Menezes, S. (2004). Eucalyptus tar pitch pretreatment for carbon material processing. Journal of applied polymer science, 91(3), 1604-1611.
  • Prauchner, M. J., Pasa, V. M. D., Otani, S., & Otani, C. (2005). Biopitch-based general purpose carbon fibers: Processing and properties. Carbon, 43(3), 591-597.
  • Ma, X., & Zhao, G. (2011). Variations in the microstructure of carbon fibers prepared from liquefied wood during carbonization. Journal of Applied Polymer Science, 121(6), 3525-3530.
  • Kim, B. J., Kotegawa, T., Eom, Y., An, J., Hong, I. P., Kato, O., ... & Yoon, S. H. (2016). Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon, 99, 649-657.
  • Jang, S. Y., Ko, S., Jeon, Y. P., Choi, J., Kang, N., Kim, H. C., ... & Lee, S. (2017). Evaluating the stabilization of isotropic pitch fibers for optimal tensile properties of carbon fibers. Journal of Industrial and Engineering Chemistry, 45, 316-322.
  • Govorov, A., Galiguzov, A., Tikhonov, N., Malakho, A., & Rogozin, A. (2016). Study of Different Types of Carbon Fiber Oxidation Kinetics. Refractories & Industrial Ceramics, 56(6).
  • Jung, M. J., Park, M. S., Lee, S., & Lee, Y. S. (2016). Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers. Applied Chemistry for Engineering, 27(3), 319-324.
  • Ko, S., Choi, J. E., Lee, C. W., & Jeon, Y. P. (2017). Modified oxidative thermal treatment for the preparation of isotropic pitch towards cost-competitive carbon fiber. Journal of Industrial and Engineering Chemistry.
  • Yue, Z., Liu, C., & Vakili, A. (2017). Solvated mesophase pitch-based carbon fibers: thermal-oxidative stabilization of the spun fiber. Journal of Materials Science, 13(52), 8176-8187.
  • Kim, J. D., Roh, J. S., & Kim, M. S. (2017). Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber. Carbon Lett, 21, 51-60.
  • Naito, K. (2016). Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile-and Pitch-Based Carbon Fibers. Journal of Materials Engineering & Performance, 25(5).
  • Bhagat, A. R., & Mahajan, P. (2016). Characterization and damage evaluation of coal tar pitch carbon matrix used in Carbon/Carbon composites. Journal of Materials Engineering and Performance, 9(25), 3904-3911.
  • Lee, H. M., Kwac, L. K., An, K. H., Park, S. J., & Kim, B. J. (2016). Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors. Energy Conversion and Management, 125, 347-352.
  • Asano, K. (2017). Thermal expansion behaviour of squeeze-cast aluminium matrix composites reinforced with PAN-and Pitch-based carbon fibres. International Journal of Cast Metals Research, 1-9.
  • Martin, A., Addiego, F., Mertz, G., Bardon, J., & Ruch, D. (2016). Pitch-Based Carbon Fibre-Reinforced PEEK Composites: Optimization of Interphase Properties by Water-Based Treatments and Self-Assembly. J Material Sci Eng, 6(308), 2169-0022.
  • Dong, J., Jia, C., Wang, M., Fang, X., Wei, H., Xie, H., ... & Huang, Y. (2017). Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Composites Science and Technology.
  • Yuan, G., Li, X., Dong, Z., Xiong, X., Rand, B., Cui, Z., ... & Wang, J. (2014). Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon, 68, 413-425.
  • Noh, Y. J., & Kim, S. Y. (2015). Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polymer Testing, 45, 132-138.
  • Mun, S. Y., Lim, H. M., & Lee, D. J. (2015). Thermal conductivity of a silicon carbide/pitch-based carbon fiber-epoxy composite. Thermochimica Acta, 619, 16-19.
  • Diez, N., Díaz, P., Álvarez, P., González, Z., Granda, M., Blanco, C., ... & Menéndez, R. (2014). Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. Materials Letters, 136, 214-217.
There are 75 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Gamzenur Özsin

Ayşe Eren Pütün

Publication Date December 19, 2018
Submission Date March 27, 2017
Acceptance Date July 26, 2017
Published in Issue Year 2018 Volume: 33 Issue: 4

Cite

APA Özsin, G., & Pütün, A. E. (2018). Zift esaslı karbon fiber üretimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(4), 1433-1444. https://doi.org/10.17341/gazimmfd.416440
AMA Özsin G, Pütün AE. Zift esaslı karbon fiber üretimi. GUMMFD. December 2018;33(4):1433-1444. doi:10.17341/gazimmfd.416440
Chicago Özsin, Gamzenur, and Ayşe Eren Pütün. “Zift Esaslı Karbon Fiber üretimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, no. 4 (December 2018): 1433-44. https://doi.org/10.17341/gazimmfd.416440.
EndNote Özsin G, Pütün AE (December 1, 2018) Zift esaslı karbon fiber üretimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 4 1433–1444.
IEEE G. Özsin and A. E. Pütün, “Zift esaslı karbon fiber üretimi”, GUMMFD, vol. 33, no. 4, pp. 1433–1444, 2018, doi: 10.17341/gazimmfd.416440.
ISNAD Özsin, Gamzenur - Pütün, Ayşe Eren. “Zift Esaslı Karbon Fiber üretimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/4 (December 2018), 1433-1444. https://doi.org/10.17341/gazimmfd.416440.
JAMA Özsin G, Pütün AE. Zift esaslı karbon fiber üretimi. GUMMFD. 2018;33:1433–1444.
MLA Özsin, Gamzenur and Ayşe Eren Pütün. “Zift Esaslı Karbon Fiber üretimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, no. 4, 2018, pp. 1433-44, doi:10.17341/gazimmfd.416440.
Vancouver Özsin G, Pütün AE. Zift esaslı karbon fiber üretimi. GUMMFD. 2018;33(4):1433-44.