Research Article
BibTex RIS Cite

Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi

Year 2019, Volume: 34 Issue: 3, 1143 - 1154, 29.05.2019
https://doi.org/10.17341/gazimmfd.460509

Abstract

Son yıllarda oldukça dikkat çeken mikroalgler gıda, sağlık, kozmetik, çevre, yakıt alanlarında kullanım potansiyeli bulunan değerli yeni nesil hammadde kaynaklarıdır.Bu çalışmada, hem bulunma miktarı bakımından hem de fonksiyonları bakımından önemli bir mikroalg sınıfı olan diatomların eldesi hedeflenerek, Marmara Denizi Mudanya kıyılarından toplanan su örnekleri üzerinde izolasyon çalışması gerçekleştirilmiş ve elde edilen izolatın moleküler analizi yapılarak Pleurosigma sp. olduğu tespit edilmiştir.

İzole Pleurosigma sp., farklı konsantrasyonlarda azot, fosfor ve silisyum içeren besin solüsyonlarında yetiştirilerek istatistiksel olarak yorumlandığında diatomun hücre yoğunluğunun,  silisyum ve azot ile belirgin şekilde pozitif korelasyon gösterdiği, ancak fosfor ile korelasyonunun seçilen fosfor aralığı için net olmadığı gözlenmiştir.

Pleurosigma sp. ile yapılan karakterizasyon çalışmalarında diatomun önemli miktarda silisyumlu yapılar içerdiği ve kül içeriğinin yüksek olduğu, yağ asidi profilinin literatürde diatomlarda sıklıkla karşılaşılan yağ asitleriyle örtüştüğü görülmüştür.

References

  • Brennan L., ve Owende P., Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co- products, Renewable and Sustainable Energy Reviews, 14(2): 557-577, 2010.
  • Kim S., Handbook of Marine Microalgae, First Edition, Elseiver Inc., San Diego, 2015.
  • Baicha Z., Salar-García M.J., Ortiz-Martínez V.M., Hernández-Fernández F.J., Ríos A.P., Labjar N., Lotfi E., Elmahi M., A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells, Fuel Processing Technology 154: 104-116, 2016.
  • Tandon P., ve Jin Q., Microalgae culture enhancement through key microbial approaches, Renewable and Sustainable Energy Reviews, 80:1089-1099, 2017.
  • Ejike E. C. C., Collins S. A., Balasuriya N., Swanson A. K., Mason B., Udenigwe C. C., Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health, Trends in Food Science & Technology, 2016, (baskıda).
  • Pina-Pérez M. C., Rivas A., Martínez A., Rodrigo D., Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food, Food Chemistry, 2017, (baskıda).
  • Raven J. A., ve Waite A. M., The evolution of silicification in diatoms: inescapable sinking and sinking as escape, New Phytologist 162 : 45–61, 2004.
  • Fuhrmann T., Lanwehr S., El Rharbi – Kucki M. ve Sumper, M., Diatoms as living photonic crystals, Applied Physics, 82:909–965, 1997.
  • Round F. R., ve Crawford R. M., Mann D.G., The Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge, 1990.
  • Dolatabadi J. E. N., ve Guardia M., Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures, Trends in Analytical Chemistry, 30(9):1539-1548, 2011.
  • Chew K. W., Yap J. Y., Show P. L., Suan N. H., Juan J. C., Ling T. C., Lee D., Chang J., Microalgae biorefinery: high value products perspectives, Bioresource Technology, 2017 (baskıda).
  • Spolaore P., Cassan C. J., Duran E., Isambert A., Commercial applications of microalgae, Journal of Bioscience and Bioenginering, 101:87 96, 2006.
  • Chisti Y., Biodiesel from microalgae, Biotechnology Advances, 25:294-306, 2007.
  • Oncel S. S., Microalgae for a macroenergy world, Renewable and Sustainable Energy Reviews, 26:241-264, 2013.
  • Gong M., ve Bassi A., Carotenoids from microalgae: A review of recent developments, Biotechnology Advances (baskıda), 2016.
  • Crawford M. A., Costeloe K., Ghebremeskel K., Phylactos A., Skirvin L., Stacey F., Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies, The American Journal of Clinical Nutrition, 66:1032-44, 1997.
  • Gupta A., Barrow C. J., Puri M., Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils, Biotechnology Advances, 30:1733-1745, 2012.
  • Rubio-Rodriguez N., Beltran S., Jaime I., Diego S. M., Sanz M. T., Carballido J. R., Production of omega-3 polyunsaturated fatty acid concentrates: A review, Innovative Food Science and Emerging Technologies,11:1-12, 2010.
  • Lebeau T., ve Robert J. M., Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products, Applied Microbiology and Biotechnology, 60:624–632, 2003.
  • Parkinson J., ve Gordon R., Beyond micromachining: the potential of diatoms, Tibtech, 17:190-196, 1999.
  • Rawat I., Kumar R.R., Mutanda T., Bux F., Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Applied Energy, 103: 444-467, 2013.
  • Scholz B., ve Liebezeit G., Growth responses of 25 benthic marine Wadden Sea diatoms isolated from the Solthörn tidal flat (southern North Sea) in relation to varying culture conditions, Diatom Research, 27(1):65–73, 2012.
  • Andersen R. A., Algal Culturing Techniques, Elseiver Academic Press, Hong Kong, 2005.
  • Mutanda T., Ramesh D., Karthikeyan S., Kumari S., Anandraj A., Bux F., Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresource Technology, 102: 57–70, 2011.
  • Paasche E., A simple method for establishing bacteria free cultures of phototactic flagellates, Conseil International pour l'Exploration de la Mer., 33:509–511, 1971.
  • Fröhlich J., ve Kornig H., New techniques for isolation of single prokaryotic cells, Federation of European Microbiological Societies Microbiology Reviews, 24:567-572, 2000.
  • Jacobsen C., Nielsen N.S., Horn A. F., Sorensen A., M., Food Enrichment with omega-3 Fatty Acids, First Edition, Woodhead Publishing Limited, Cambridge, 2013.
  • Jones A. K., Rhodes M. E., Evans S. C., The use of antibiotics to obtain axenic cultures of algae, British Phycological Journal, 8:2, 185-196, 1973.
  • Heaney S. I., ve Jaworski, G. H. M., A simple separation technique for purifying micro-algae, British Phycological Journal, 12:2, 171-174, 1977.
  • Howarth R., ve Marino R., Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades, Limnology and Oceanography, 51, 364–376, 2006.
  • Juneja A., Ceballos R.M., Murthy G.S., Effects of Enviromental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies.6:4607-4638, 2013.
  • Fujita R.M., Wheeler P. A., Edwards R. L., Metabolic regulation of ammonia uptake by Ulva rigida (Chlorophyta): A compartmental analysis of the rate limiting step for uptake. Journal of Phycology, 24: 560–566, 1988.
  • Gordillo F. J. L., Jiménez C., Figueroa F. L., Niell F. X., Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). , Journal of Applied Phycology, 10: 461–469, 1998.
  • Schindler D. W., Evolution of phosphorus limitation in lakes, Science, 195, 260–262, 1977.
  • Bhaya D., Schwarz R., Grossman A. R., Molecular Responses Environmental Stress In:The ecology of cyanobacteria-Their diversity in time and space,(Ed. Whitton B.A and Potts M.), 397-442, Kluwer Academic Publishers, USA, 2002.
  • Geider R.J., ve La Roche J., Redfield revisited: variability of C: N:P in marine microalgae and its biochemical basis, European Journal of Phycology, 37 (01): 1-17, 2002.
  • Powell N., Shilton A., Chisti Y., Pratt S., Towards a luxury uptake process via microalgae – Defining the polyphosphate Dynamics, Water Research, 43:4207–4213, 2009.
  • Ellwood N. T. W., Di Pippo F., Albertano, P., Phosphatase activities of cultured phototrophic biofilms, Water Reearch. 46 (2): 378-386, 2012.
  • Whitton B. A., Al-Shehri A. M., Ellwood N. T., Turner, B. L., Ecological Aspects of Phosphatase Activity in Cyanobacteria, Eukaryotic Algae and Bryophytes, In: Organic Phosphorus in the Environmen, CAB International, Wallingford, UK, 205-241, 2005.
  • Turpin V., Robert J., Goulletquer P., Limiting nutrients of oyster pond seawaters in the Marennes-Oléron region for Haslea ostrearia: applications to the mass production of the diatom in mesocosm experiments, Aquatic Living Resources 12(5):335−342, 1999.
  • Bowler C., Martino A., Falciatore A., Diatom cell division in an environmental context, Current Opinion in Plant Biology, 13:623–630, 2010.
  • Burnett J. H., Baker H. G., Beevers H., Whatley F. R., The Biology of Diatoms (Ed. Werner, D., University of California Press, California, 111,142, 1977.
  • Hildebrand M., Davis A. K., Smith S. R. Traller J. C., Abbriano R., The place of diatoms in the biofuels industry, Biofuels 3(2):221–240, 2012.
  • Thamatrakoln K., ve Hildebrand M., Silicon uptake in diatoms revisited, a model forsaturable and nonsaturable uptake kinetics and the role of silicon transporters, Plant Physiopgy. 146:1397–1407, 2008.
  • Javaheri N., Dries R., Burson A., Stal L. J., Sloot P. M. A., Kaandorp J. A., Temperature affects the silicate morphology in a diatom, Nature, 5:11652-11661, 2015.
  • Taguchi S., Hirata J.A., Laws E.A., Silicate deficiency and lipid synthesis of marine diatoms, Journal of Phycology, 23:260–267, 1987.
  • Wen Z.Y., ve Chen F., Heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis: effects of silicate and glucose, Journal of Industrial Microbiology and Biotechnology, 25:218–224, 2000.
  • Coombs J., Halicki P. J., Holm-Hansen O., Volcani B. E., Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in silicon-starvation synchrony of Navicula pelliculosa (Breb.) Hilse, Experimental Cell Research, 47:315– 28, 1967.
  • Lavens P., ve Sorgeloos P., Manual on the production and use of live food for aquaculture, FAO Fisheries Technical Paper No. 361, Rome. FAO, 10–14, 1996.
  • Ramanna L., Rawat I., Bux F., Light enhancement strategies improve microalgal biomass productivity, Renewable and Sustainable Energy Reviews 80 :765–773, 2017.
  • Ras M., Steyer J., Bernard O., Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, Springer, 12 (2), pp.153-164, 2013.
  • Morris I., Glover H., Yentsch C., Products of photosynthesis by marine phytoplankton: The effect of environmental factors on the relative rates of protein synthesis, Marine Biology, 27: 1–9, 1974.
  • Razzak S., Hossain M. M., Lucky R. A., Bassi A. S., de Lasa H., Integrated CO2 capture, waste water treatment and biofuel production by microalgae culturing—A review, Renewable and Sustainable Energy Reviews, 27:622–653, 2013.
  • Hinga K.R., Co-occurrence of dinoflagellate blooms and high pH in marine enclosures, Marine Ecology Progress Series, 86: 181–187, 1992.
  • Kumar K., Mishra S. K., Shrivastav A., Park M. S., Yang J., Recent trends in the mass cultivation of algae in raceway ponds, Renewable and Sustainable Energy Reviews, 51:875–885, 2015.
  • Richmond A., Biological Principles of Mass Cultivation, In:Handbook of Microalgal Culture:Biotechnology and Applied Phycology(Ed. By A. Richmond), CRC Press, Inc., Boca Raton, 125-178, 2004.
  • Qi-hua W., Mei L., Shu-hong W., Ming-jin D., Ya-juan L., Ai-hua C., Studies on culture conditions of benthic diatoms for feding abalone II. Effects of salinity, Ph, nitrogenous and phosphate nutrients on growth rate, Chinese Journal of Oceanology and Limnology, 16(1):78-83, 1998.
  • Khan S., Haque M. M., Arakawa O., Onoue Y., The influence of nitrogen and phosphorus on the growth of a diatom Skeletonema costatum (Greville) Cleve, Journal Profile: Bangladesh Journal of Fisheries Research, 2(1): 23-29, 1998.
  • Yodsuwan N., Sawayama S., Sirisansaneeyakul S., Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum, Agriculture and Natural Resources, 2017, (baskıda).
  • Yang M., Zhao W., Xie X., Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms, Acta Ecologica Sinica, 34:311–319, 2014.
  • Hemalatha A., Karthikeyan K. P., Girija K., Saranya C., Anantharaman P., Sampathkumar P., Effect of nutrients on the growth and biochemical composition of the marine diatom, Chaetoceros Simplex (Ostenfeld,1901), 5(1):30-35, 2014.
  • Katiyar D., Lall A. M., Singh B., Effect of phosphate on growth of diatoms, Indian Journal of Scientific Research, 1(2):103-106, 2010.
  • Admiral W., Tolerance of estuarine benthic diatoms ti high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate, 43:307-315, 1977.
  • Venkataraman G. S., The cultivation of algae, Indian Council of Agricultural Research, New Delhi, 1964.
  • Ketchum B. H., Mineral nutrition of phytoplankton, Annual Review Phytoplankton Physiology, 5:55-74, 1954.
  • Hillebrand H., ve Sommer U., Effect of continuous nutrient enrichment on microalgae colonizing hard substrates”, Hydrobiologia, 426: 185–192, 2000.
  • Ke Z., Tan Y., Ma Y., Huang L., Wang S., Effects of surface current patterns on spatial variations of phytoplankton community and environmental factors in Sunda shelf, Continental Shelf Research, 82:119-127, 2014.
  • Qi-hua W., Ya-juan L., Mei L., Studies on culture conditions of benthic diatoms for feding abalone III. Effects of iron and silicon nutrients and of orthogonal combinations of nitrogen, phosphorus, iron and silicon on growth rate, Chinese Journal of Oceanology and Limnology, 17(2):105-111, 1999.
  • Parsons T. R., Stephens K., Strickland J.D. H., On the chemical composition of eleven species of marine phytoplankton, Journal of the Fisheries Research Board of Canada, 18:1001-16, 1961.
  • Myklestad S., ve Haug A., Production of Carbohydrates by marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I.Effect of the concentration of nutrients in the culture medium, Journal of Experimental Marine Biology and Ecology, 9:125-136, 1972.
  • Brown M. R., Dunstan G. A., Norwood S. J., Miller, K. A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology,32:64-73, 1996.
  • Marella T. K., Parine B. R., Tiwari A., Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water, 2017, (baskıda).
  • Karpenyuk T. A., Orazova S. B., Dzhokebaeva S. A., Goncharova A. V., Tzurkan Y. S., Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7(7):746-748, 2013.
  • Zimmerman J., Jahn R., Gemeinholzer B., Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols, Organisms Diversity&Evolution, 11:173-192, 2011.
  • Luddington A., ve Kaczmarska I., Lovejoy, C., Distance and Character-Based Evaluation of the V4Region of the 18S rRNA Gene for the Identification of Diatoms (Bacillariophyceae), Public Library of Science ONE, 7(9):1-11, 2012 .
  • Zhang Z., Schwartz S., Wagner L., Miller, W., A greedy algorithm for aligning DNA sequences, Journal of Computational Biology 7(1-2):203-14, 2000.
  • Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A., Database Indexing for Production MegaBLAST Searches, Bioinformatics 24:1757-1764, 2008.
  • Çinar, S., Denizel Diatom İzolasyonu, Tanımlanması ve Besin Maddelerinin Diatom Büyümesi Üzerine Etkisinin İncelenmesi, Yüksek Lisans Tezi, YTÜ, Kasım 2017.
  • Pahl S. L., Lewis D. M., Chen F., King K. D., Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica, Journal of Applied Phycology, 22:165–171, 2010.
  • Simental-Trinidad J. A., Sanchez-Saavedra M. P., Correa- Reyes J. G., Biochemical composition of benthic marine diatoms using as culture medium agricultural fertilizer, Journal of Shellfish Research, 2:611-617, 2001.
  • De Angelis R., Melino S., Prosposito P., Casalboni M., Lamastra F. R., Nanni F., Bruno L., Congestri R., The diatom Staurosirella pinnata for photoactive material production, Public Library of Science ONE, 1-17, 2016.
  • De Stefano, L., Rendina I., De Stefano M., Bismuto A., Maddalena P., Marine diatoms as optical chemical sensors, Applied Physics Letters, 87: 233902-3, 2005.
  • Zhang J., Ding T., Zhang Z., Xu L., Zhang C., Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells, Public Library of Science ONE, 1-18, 2015.
  • Lambert J. B., Shurvell H. F., Cooks G., Introduction to organic spectroscopy, Macmillian,New York, 174-177, 1987.
  • Xia S., Gao B., Li A., Xiong J., Ao Z., Zhang, C., Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita, Marine Drugs, 12:4883-4897, 2014.
  • Myklestad S., Haug A., Production of Carbohydrates by marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I.Effect of the concentration of nutrients in the culture medium, Journal of Experimental Marine Biology and Ecology, 9:125-136, 1972.
  • Brown M. R., Dunstan G. A., Norwood S. J., Miller K. A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology, 32:64-73, 1996.
  • Coombs J., Halicki P. J., Holm-Hansen O., Volcani B. E., Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in silicon-starvation synchrony of Navicula pelliculosa (Breb.) Hilse, Experimental Cell Research, 47:315– 28, 1967.
  • Chen Y., Immobilization of twelve benthic diatom species for long-term storage and as feed for post-larval abalone Haliotis diversicolor, Aquaculture, 263:97-106, 2006.
  • Karpenyuk T. A., Orazova S. B., Dzhokebaeva S. A., Goncharova A. V., Tzurkan Y. S., Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7(7):746-748, 2013.
  • Marella T. K., Parine B. R., Tiwari A., Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water, 2017, (baskıda).
  • Volkman J. K. Jeffrey S. W., Nichols P. D., Rogers G. I., Garland C. D., Fatty acid and lipid composition of 10 species of microalgae used in mariculture, 128:219-240, 1989.
  • Tsurkan Y., Karpenyuk T., Guschina I., Orazova S., Goncharova A., Beisembaeva R., Identification of newly-isolated microorganisms containing valuable polyunsaturated fatty acids, Journal of Biotech Research, 6:14-20, 2015.
  • Hoffmann L. J., Peeken I., Lochte K., Co-limitation by iron, silicate, and light of three Southern Ocean diatom species, Biogeosciences Discuss, 4: 209–247, 2007.
  • Jorgensen E., Effects of different silicon concentrations on the growth of diatoms, Physiologia Plantahum, 5:161-170, 1952.
  • Stevenson R. J., Hill B. H., Herlihy A. T., Algae–P relationships, thresholds, and frequency distributions guide nutrient criterion development, Journal of the North American Benthological Society, 27(3):783–799, 2008.
Year 2019, Volume: 34 Issue: 3, 1143 - 1154, 29.05.2019
https://doi.org/10.17341/gazimmfd.460509

Abstract

References

  • Brennan L., ve Owende P., Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co- products, Renewable and Sustainable Energy Reviews, 14(2): 557-577, 2010.
  • Kim S., Handbook of Marine Microalgae, First Edition, Elseiver Inc., San Diego, 2015.
  • Baicha Z., Salar-García M.J., Ortiz-Martínez V.M., Hernández-Fernández F.J., Ríos A.P., Labjar N., Lotfi E., Elmahi M., A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells, Fuel Processing Technology 154: 104-116, 2016.
  • Tandon P., ve Jin Q., Microalgae culture enhancement through key microbial approaches, Renewable and Sustainable Energy Reviews, 80:1089-1099, 2017.
  • Ejike E. C. C., Collins S. A., Balasuriya N., Swanson A. K., Mason B., Udenigwe C. C., Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health, Trends in Food Science & Technology, 2016, (baskıda).
  • Pina-Pérez M. C., Rivas A., Martínez A., Rodrigo D., Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food, Food Chemistry, 2017, (baskıda).
  • Raven J. A., ve Waite A. M., The evolution of silicification in diatoms: inescapable sinking and sinking as escape, New Phytologist 162 : 45–61, 2004.
  • Fuhrmann T., Lanwehr S., El Rharbi – Kucki M. ve Sumper, M., Diatoms as living photonic crystals, Applied Physics, 82:909–965, 1997.
  • Round F. R., ve Crawford R. M., Mann D.G., The Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge, 1990.
  • Dolatabadi J. E. N., ve Guardia M., Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures, Trends in Analytical Chemistry, 30(9):1539-1548, 2011.
  • Chew K. W., Yap J. Y., Show P. L., Suan N. H., Juan J. C., Ling T. C., Lee D., Chang J., Microalgae biorefinery: high value products perspectives, Bioresource Technology, 2017 (baskıda).
  • Spolaore P., Cassan C. J., Duran E., Isambert A., Commercial applications of microalgae, Journal of Bioscience and Bioenginering, 101:87 96, 2006.
  • Chisti Y., Biodiesel from microalgae, Biotechnology Advances, 25:294-306, 2007.
  • Oncel S. S., Microalgae for a macroenergy world, Renewable and Sustainable Energy Reviews, 26:241-264, 2013.
  • Gong M., ve Bassi A., Carotenoids from microalgae: A review of recent developments, Biotechnology Advances (baskıda), 2016.
  • Crawford M. A., Costeloe K., Ghebremeskel K., Phylactos A., Skirvin L., Stacey F., Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies, The American Journal of Clinical Nutrition, 66:1032-44, 1997.
  • Gupta A., Barrow C. J., Puri M., Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils, Biotechnology Advances, 30:1733-1745, 2012.
  • Rubio-Rodriguez N., Beltran S., Jaime I., Diego S. M., Sanz M. T., Carballido J. R., Production of omega-3 polyunsaturated fatty acid concentrates: A review, Innovative Food Science and Emerging Technologies,11:1-12, 2010.
  • Lebeau T., ve Robert J. M., Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products, Applied Microbiology and Biotechnology, 60:624–632, 2003.
  • Parkinson J., ve Gordon R., Beyond micromachining: the potential of diatoms, Tibtech, 17:190-196, 1999.
  • Rawat I., Kumar R.R., Mutanda T., Bux F., Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Applied Energy, 103: 444-467, 2013.
  • Scholz B., ve Liebezeit G., Growth responses of 25 benthic marine Wadden Sea diatoms isolated from the Solthörn tidal flat (southern North Sea) in relation to varying culture conditions, Diatom Research, 27(1):65–73, 2012.
  • Andersen R. A., Algal Culturing Techniques, Elseiver Academic Press, Hong Kong, 2005.
  • Mutanda T., Ramesh D., Karthikeyan S., Kumari S., Anandraj A., Bux F., Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresource Technology, 102: 57–70, 2011.
  • Paasche E., A simple method for establishing bacteria free cultures of phototactic flagellates, Conseil International pour l'Exploration de la Mer., 33:509–511, 1971.
  • Fröhlich J., ve Kornig H., New techniques for isolation of single prokaryotic cells, Federation of European Microbiological Societies Microbiology Reviews, 24:567-572, 2000.
  • Jacobsen C., Nielsen N.S., Horn A. F., Sorensen A., M., Food Enrichment with omega-3 Fatty Acids, First Edition, Woodhead Publishing Limited, Cambridge, 2013.
  • Jones A. K., Rhodes M. E., Evans S. C., The use of antibiotics to obtain axenic cultures of algae, British Phycological Journal, 8:2, 185-196, 1973.
  • Heaney S. I., ve Jaworski, G. H. M., A simple separation technique for purifying micro-algae, British Phycological Journal, 12:2, 171-174, 1977.
  • Howarth R., ve Marino R., Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades, Limnology and Oceanography, 51, 364–376, 2006.
  • Juneja A., Ceballos R.M., Murthy G.S., Effects of Enviromental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies.6:4607-4638, 2013.
  • Fujita R.M., Wheeler P. A., Edwards R. L., Metabolic regulation of ammonia uptake by Ulva rigida (Chlorophyta): A compartmental analysis of the rate limiting step for uptake. Journal of Phycology, 24: 560–566, 1988.
  • Gordillo F. J. L., Jiménez C., Figueroa F. L., Niell F. X., Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). , Journal of Applied Phycology, 10: 461–469, 1998.
  • Schindler D. W., Evolution of phosphorus limitation in lakes, Science, 195, 260–262, 1977.
  • Bhaya D., Schwarz R., Grossman A. R., Molecular Responses Environmental Stress In:The ecology of cyanobacteria-Their diversity in time and space,(Ed. Whitton B.A and Potts M.), 397-442, Kluwer Academic Publishers, USA, 2002.
  • Geider R.J., ve La Roche J., Redfield revisited: variability of C: N:P in marine microalgae and its biochemical basis, European Journal of Phycology, 37 (01): 1-17, 2002.
  • Powell N., Shilton A., Chisti Y., Pratt S., Towards a luxury uptake process via microalgae – Defining the polyphosphate Dynamics, Water Research, 43:4207–4213, 2009.
  • Ellwood N. T. W., Di Pippo F., Albertano, P., Phosphatase activities of cultured phototrophic biofilms, Water Reearch. 46 (2): 378-386, 2012.
  • Whitton B. A., Al-Shehri A. M., Ellwood N. T., Turner, B. L., Ecological Aspects of Phosphatase Activity in Cyanobacteria, Eukaryotic Algae and Bryophytes, In: Organic Phosphorus in the Environmen, CAB International, Wallingford, UK, 205-241, 2005.
  • Turpin V., Robert J., Goulletquer P., Limiting nutrients of oyster pond seawaters in the Marennes-Oléron region for Haslea ostrearia: applications to the mass production of the diatom in mesocosm experiments, Aquatic Living Resources 12(5):335−342, 1999.
  • Bowler C., Martino A., Falciatore A., Diatom cell division in an environmental context, Current Opinion in Plant Biology, 13:623–630, 2010.
  • Burnett J. H., Baker H. G., Beevers H., Whatley F. R., The Biology of Diatoms (Ed. Werner, D., University of California Press, California, 111,142, 1977.
  • Hildebrand M., Davis A. K., Smith S. R. Traller J. C., Abbriano R., The place of diatoms in the biofuels industry, Biofuels 3(2):221–240, 2012.
  • Thamatrakoln K., ve Hildebrand M., Silicon uptake in diatoms revisited, a model forsaturable and nonsaturable uptake kinetics and the role of silicon transporters, Plant Physiopgy. 146:1397–1407, 2008.
  • Javaheri N., Dries R., Burson A., Stal L. J., Sloot P. M. A., Kaandorp J. A., Temperature affects the silicate morphology in a diatom, Nature, 5:11652-11661, 2015.
  • Taguchi S., Hirata J.A., Laws E.A., Silicate deficiency and lipid synthesis of marine diatoms, Journal of Phycology, 23:260–267, 1987.
  • Wen Z.Y., ve Chen F., Heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis: effects of silicate and glucose, Journal of Industrial Microbiology and Biotechnology, 25:218–224, 2000.
  • Coombs J., Halicki P. J., Holm-Hansen O., Volcani B. E., Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in silicon-starvation synchrony of Navicula pelliculosa (Breb.) Hilse, Experimental Cell Research, 47:315– 28, 1967.
  • Lavens P., ve Sorgeloos P., Manual on the production and use of live food for aquaculture, FAO Fisheries Technical Paper No. 361, Rome. FAO, 10–14, 1996.
  • Ramanna L., Rawat I., Bux F., Light enhancement strategies improve microalgal biomass productivity, Renewable and Sustainable Energy Reviews 80 :765–773, 2017.
  • Ras M., Steyer J., Bernard O., Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, Springer, 12 (2), pp.153-164, 2013.
  • Morris I., Glover H., Yentsch C., Products of photosynthesis by marine phytoplankton: The effect of environmental factors on the relative rates of protein synthesis, Marine Biology, 27: 1–9, 1974.
  • Razzak S., Hossain M. M., Lucky R. A., Bassi A. S., de Lasa H., Integrated CO2 capture, waste water treatment and biofuel production by microalgae culturing—A review, Renewable and Sustainable Energy Reviews, 27:622–653, 2013.
  • Hinga K.R., Co-occurrence of dinoflagellate blooms and high pH in marine enclosures, Marine Ecology Progress Series, 86: 181–187, 1992.
  • Kumar K., Mishra S. K., Shrivastav A., Park M. S., Yang J., Recent trends in the mass cultivation of algae in raceway ponds, Renewable and Sustainable Energy Reviews, 51:875–885, 2015.
  • Richmond A., Biological Principles of Mass Cultivation, In:Handbook of Microalgal Culture:Biotechnology and Applied Phycology(Ed. By A. Richmond), CRC Press, Inc., Boca Raton, 125-178, 2004.
  • Qi-hua W., Mei L., Shu-hong W., Ming-jin D., Ya-juan L., Ai-hua C., Studies on culture conditions of benthic diatoms for feding abalone II. Effects of salinity, Ph, nitrogenous and phosphate nutrients on growth rate, Chinese Journal of Oceanology and Limnology, 16(1):78-83, 1998.
  • Khan S., Haque M. M., Arakawa O., Onoue Y., The influence of nitrogen and phosphorus on the growth of a diatom Skeletonema costatum (Greville) Cleve, Journal Profile: Bangladesh Journal of Fisheries Research, 2(1): 23-29, 1998.
  • Yodsuwan N., Sawayama S., Sirisansaneeyakul S., Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum, Agriculture and Natural Resources, 2017, (baskıda).
  • Yang M., Zhao W., Xie X., Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms, Acta Ecologica Sinica, 34:311–319, 2014.
  • Hemalatha A., Karthikeyan K. P., Girija K., Saranya C., Anantharaman P., Sampathkumar P., Effect of nutrients on the growth and biochemical composition of the marine diatom, Chaetoceros Simplex (Ostenfeld,1901), 5(1):30-35, 2014.
  • Katiyar D., Lall A. M., Singh B., Effect of phosphate on growth of diatoms, Indian Journal of Scientific Research, 1(2):103-106, 2010.
  • Admiral W., Tolerance of estuarine benthic diatoms ti high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate, 43:307-315, 1977.
  • Venkataraman G. S., The cultivation of algae, Indian Council of Agricultural Research, New Delhi, 1964.
  • Ketchum B. H., Mineral nutrition of phytoplankton, Annual Review Phytoplankton Physiology, 5:55-74, 1954.
  • Hillebrand H., ve Sommer U., Effect of continuous nutrient enrichment on microalgae colonizing hard substrates”, Hydrobiologia, 426: 185–192, 2000.
  • Ke Z., Tan Y., Ma Y., Huang L., Wang S., Effects of surface current patterns on spatial variations of phytoplankton community and environmental factors in Sunda shelf, Continental Shelf Research, 82:119-127, 2014.
  • Qi-hua W., Ya-juan L., Mei L., Studies on culture conditions of benthic diatoms for feding abalone III. Effects of iron and silicon nutrients and of orthogonal combinations of nitrogen, phosphorus, iron and silicon on growth rate, Chinese Journal of Oceanology and Limnology, 17(2):105-111, 1999.
  • Parsons T. R., Stephens K., Strickland J.D. H., On the chemical composition of eleven species of marine phytoplankton, Journal of the Fisheries Research Board of Canada, 18:1001-16, 1961.
  • Myklestad S., ve Haug A., Production of Carbohydrates by marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I.Effect of the concentration of nutrients in the culture medium, Journal of Experimental Marine Biology and Ecology, 9:125-136, 1972.
  • Brown M. R., Dunstan G. A., Norwood S. J., Miller, K. A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology,32:64-73, 1996.
  • Marella T. K., Parine B. R., Tiwari A., Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water, 2017, (baskıda).
  • Karpenyuk T. A., Orazova S. B., Dzhokebaeva S. A., Goncharova A. V., Tzurkan Y. S., Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7(7):746-748, 2013.
  • Zimmerman J., Jahn R., Gemeinholzer B., Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols, Organisms Diversity&Evolution, 11:173-192, 2011.
  • Luddington A., ve Kaczmarska I., Lovejoy, C., Distance and Character-Based Evaluation of the V4Region of the 18S rRNA Gene for the Identification of Diatoms (Bacillariophyceae), Public Library of Science ONE, 7(9):1-11, 2012 .
  • Zhang Z., Schwartz S., Wagner L., Miller, W., A greedy algorithm for aligning DNA sequences, Journal of Computational Biology 7(1-2):203-14, 2000.
  • Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A., Database Indexing for Production MegaBLAST Searches, Bioinformatics 24:1757-1764, 2008.
  • Çinar, S., Denizel Diatom İzolasyonu, Tanımlanması ve Besin Maddelerinin Diatom Büyümesi Üzerine Etkisinin İncelenmesi, Yüksek Lisans Tezi, YTÜ, Kasım 2017.
  • Pahl S. L., Lewis D. M., Chen F., King K. D., Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica, Journal of Applied Phycology, 22:165–171, 2010.
  • Simental-Trinidad J. A., Sanchez-Saavedra M. P., Correa- Reyes J. G., Biochemical composition of benthic marine diatoms using as culture medium agricultural fertilizer, Journal of Shellfish Research, 2:611-617, 2001.
  • De Angelis R., Melino S., Prosposito P., Casalboni M., Lamastra F. R., Nanni F., Bruno L., Congestri R., The diatom Staurosirella pinnata for photoactive material production, Public Library of Science ONE, 1-17, 2016.
  • De Stefano, L., Rendina I., De Stefano M., Bismuto A., Maddalena P., Marine diatoms as optical chemical sensors, Applied Physics Letters, 87: 233902-3, 2005.
  • Zhang J., Ding T., Zhang Z., Xu L., Zhang C., Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells, Public Library of Science ONE, 1-18, 2015.
  • Lambert J. B., Shurvell H. F., Cooks G., Introduction to organic spectroscopy, Macmillian,New York, 174-177, 1987.
  • Xia S., Gao B., Li A., Xiong J., Ao Z., Zhang, C., Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita, Marine Drugs, 12:4883-4897, 2014.
  • Myklestad S., Haug A., Production of Carbohydrates by marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I.Effect of the concentration of nutrients in the culture medium, Journal of Experimental Marine Biology and Ecology, 9:125-136, 1972.
  • Brown M. R., Dunstan G. A., Norwood S. J., Miller K. A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology, 32:64-73, 1996.
  • Coombs J., Halicki P. J., Holm-Hansen O., Volcani B. E., Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in silicon-starvation synchrony of Navicula pelliculosa (Breb.) Hilse, Experimental Cell Research, 47:315– 28, 1967.
  • Chen Y., Immobilization of twelve benthic diatom species for long-term storage and as feed for post-larval abalone Haliotis diversicolor, Aquaculture, 263:97-106, 2006.
  • Karpenyuk T. A., Orazova S. B., Dzhokebaeva S. A., Goncharova A. V., Tzurkan Y. S., Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7(7):746-748, 2013.
  • Marella T. K., Parine B. R., Tiwari A., Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water, 2017, (baskıda).
  • Volkman J. K. Jeffrey S. W., Nichols P. D., Rogers G. I., Garland C. D., Fatty acid and lipid composition of 10 species of microalgae used in mariculture, 128:219-240, 1989.
  • Tsurkan Y., Karpenyuk T., Guschina I., Orazova S., Goncharova A., Beisembaeva R., Identification of newly-isolated microorganisms containing valuable polyunsaturated fatty acids, Journal of Biotech Research, 6:14-20, 2015.
  • Hoffmann L. J., Peeken I., Lochte K., Co-limitation by iron, silicate, and light of three Southern Ocean diatom species, Biogeosciences Discuss, 4: 209–247, 2007.
  • Jorgensen E., Effects of different silicon concentrations on the growth of diatoms, Physiologia Plantahum, 5:161-170, 1952.
  • Stevenson R. J., Hill B. H., Herlihy A. T., Algae–P relationships, thresholds, and frequency distributions guide nutrient criterion development, Journal of the North American Benthological Society, 27(3):783–799, 2008.
There are 96 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Sait Çinar This is me

Didem Özçimen

Mete Yılmaz

Publication Date May 29, 2019
Submission Date November 17, 2017
Published in Issue Year 2019 Volume: 34 Issue: 3

Cite

APA Çinar, S., Özçimen, D., & Yılmaz, M. (2019). Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), 1143-1154. https://doi.org/10.17341/gazimmfd.460509
AMA Çinar S, Özçimen D, Yılmaz M. Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. GUMMFD. May 2019;34(3):1143-1154. doi:10.17341/gazimmfd.460509
Chicago Çinar, Sait, Didem Özçimen, and Mete Yılmaz. “Denizel Diatom Izolasyonu, tanımlanması Ve Besin Maddelerinin Diatom büyümesi üzerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no. 3 (May 2019): 1143-54. https://doi.org/10.17341/gazimmfd.460509.
EndNote Çinar S, Özçimen D, Yılmaz M (May 1, 2019) Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 3 1143–1154.
IEEE S. Çinar, D. Özçimen, and M. Yılmaz, “Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi”, GUMMFD, vol. 34, no. 3, pp. 1143–1154, 2019, doi: 10.17341/gazimmfd.460509.
ISNAD Çinar, Sait et al. “Denizel Diatom Izolasyonu, tanımlanması Ve Besin Maddelerinin Diatom büyümesi üzerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/3 (May 2019), 1143-1154. https://doi.org/10.17341/gazimmfd.460509.
JAMA Çinar S, Özçimen D, Yılmaz M. Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. GUMMFD. 2019;34:1143–1154.
MLA Çinar, Sait et al. “Denizel Diatom Izolasyonu, tanımlanması Ve Besin Maddelerinin Diatom büyümesi üzerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 34, no. 3, 2019, pp. 1143-54, doi:10.17341/gazimmfd.460509.
Vancouver Çinar S, Özçimen D, Yılmaz M. Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. GUMMFD. 2019;34(3):1143-54.