Research Article
BibTex RIS Cite
Year 2020, Volume: 35 Issue: 3, 1111 - 1128, 07.04.2020
https://doi.org/10.17341/gazimmfd.467172

Abstract

References

  • [1] Akbaş, B. and Shen, J., Earthquake-Resistant Design and Energy Concepts, Technical Journal, Turkish Chamber of Civil Engineers, 14, 2, 2877-2901; 2003.
  • [2] Fajfar P and Vidic T. Consistent Inelastic Design Spectra: Hysteretic and Input Energy. Journal of Earthquake Engineering and Structural Dynamics, 23, 523-537;1994.
  • [3] Shen J, and Akbas B. Seismic Energy Demand in Steel Moment Frames. Journal of Earthquake Engineering, 3(4): 519-559;1999.
  • [4] Dogru S., Aksar B., Akbas B., Shen J., Doran B. Multi-Level Seismic Energy Demands In Steel Moment Frames. Eighth National Conference on Earthquake Engineering, Istanbul Technical University, May 11-14;2015.
  • [5] Chopra A.K. Dynamics of Structures. Theory and Applications to Earthquake Engineering. Prentice-Hall, Inc., New Jersey;2010.
  • [6] Housner GW. Limit Design of Structures to Resist Earthquakes. In Proceedings of the First World Conference on Earthquake Engineering, Berkeley, California, 5-1-5-13; 1956.
  • [7] Akiyama H. Earthquake-Resistant Limit-State Design for Buildings. University of Tokyo Press;1985.
  • [8] Akbas B, Shen J, and Hao H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective. The Structural Design of Tall Buildings , 10:193-217;2001.
  • [9] Choi, H. and Kim, J. Energy-based Seismic Design of Buckling-Retrained Braced Frames using Hysteretic Energy Spectrum. Engineering Structures, 28(2), pp.304-311;2006.
  • [10] Bojorquez, E., Ruiz, S., Teran-Gilmore, A. Reliability-based Evaluation of Steel Structures using Energy Concepts. Engineering Structures, 30(6), pp.1745-1759;2008.
  • [11] Gong ,Y., Xue Y., Xu,L., Grierson, Donald E. Energy-based design optimization of steel building frameworks using nonlinear response history analysis. Journal of Constructional Steel Research, Volume 68, Issue 1, Pages 43-50; January 2012.
  • [12] Paolacci, F. An Energy-based Design for Seismic Resistant Structures with Viscoelastic Dampers.”, Earthquake and Structures, 4(2), pp.219-239;2013.
  • [13] Dogru, S., Aksar, B.,Akbas, B., Shen, J., Seker, O., Wen, R. Seismic Energy Demands in Steel Moment Frames. Applied Mechanics and Materials, Vol. 847, pp. 210-221;2016.
  • [14] Dogru, S., Aksar, B., Akbas, B., Shen, J. Parametric Study on Energy Demands for Special Steel Concentrically Braced Frames. Steel and Composite Structures, Vol. 24, No. 2, June; 2017.
  • [15] Doğru, S., Akşar, B., Akbaş, B., Shen, J., Doran, B. Seismic Energy Demands of Inverted V-Braced Frames. In: Kasimzade A., Şafak E., Ventura C., Naeim F., Mukai Y. (eds) Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering. Springer, Cham; 2019.
  • [16] Akşar, B , Doğru, S , Akbaş, B . "Çelik moment çerçevelerde kuvvetli deprem yer hareketi altında arttırılmış deprem etkileri". Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33:2, 441-457; 2018.
  • [17] Hou.H., Qu,B. Duration effect of spectrally matched ground motions on seismic demands of elastic perfectly plastic SDOFS. Engineering Structures, Volume 90, 2015, Pages 48-60 ;2015.
  • [18] ASCE 7-10 . Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, Reston, VA. ;2010
  • [19] AISC 341-10. Seismic Provisions for Steel Structural Buildings. American Institute of Steel Construction. American Institute of Steel Construction. Chicago, IL;2010
  • [20] AISC 360-10 . Specification for Structural Steel Buildings. American Institute of Steel Construction. American Institute of Steel Construction. Chicago, IL ;2010 .
  • [21] AISC 358-10 . Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. American Institute of Steel Construction. Chicago, IL ;2010 .
  • [22] PEER Database, Peer.berkeley.edu/peer_ground_motion_database. Pacific Earthquake Engineering Research Center, 325 Davis Hall, University of California, Berkeley.
  • [23] PERFORM-3D . Nonlinear Analysis and Performance Assessment for 3D Structures,Version5 ;2011.

Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri

Year 2020, Volume: 35 Issue: 3, 1111 - 1128, 07.04.2020
https://doi.org/10.17341/gazimmfd.467172

Abstract

Bir
yapının, kuvvetli yer hareketlerine maruz kalması durumunda elastik ötesi
davranış göstermesi beklenir. Yapının doğrusal olmayan sismik davranışını
değerlendirmek için en güvenli yöntemlerinden biri enerji esaslı yaklaşımı
kullanmaktır. Enerji esaslı  tasarım,
yapıya giren enerji ile yapının enerji tüketme kapasitesinin dengesi olarak
ifade edilebilir. Enerji esaslı çalışmalar daha çok tek serbestlik dereceli
(TSD) sistemler üzerine uygulanmıştır. Gerçek yapılar için, çok serbestlik
dereceli (ÇSD) sistemlerde, enerjinin ve enerjiye bağlı parametrelerin
performans esaslı yaklaşımlara göre incelenmesine ihtiyaç duyulmaktadır. Bu
çalışmada enerji esaslı yaklaşımın değerlendirilmesi için  yapıya giren toplam enerji ve  histeretik enerji gibi sismik enerji
parametreleri incelenmiş ve farklı yükseklik-açıklık konfigürasyonlarına sahip
süneklik düzeyi yüksek moment aktaran çelik çerçevelerdeki değişimi
gözlemlenmiştir. Az, orta ve çok katlı çelik çerçevelerden oluşan sistemler  doğrusal analiz ve zaman tanım alanında
doğrusal olmayan analiz hesap yöntemleri 
kullanılarak incelenmiştir. Analiz 
sonuçları değerlendirilerek doğrusal olmayan histeretik enerji dağılımı
ve enerji talep spektrumları elde edilmiştir. 

References

  • [1] Akbaş, B. and Shen, J., Earthquake-Resistant Design and Energy Concepts, Technical Journal, Turkish Chamber of Civil Engineers, 14, 2, 2877-2901; 2003.
  • [2] Fajfar P and Vidic T. Consistent Inelastic Design Spectra: Hysteretic and Input Energy. Journal of Earthquake Engineering and Structural Dynamics, 23, 523-537;1994.
  • [3] Shen J, and Akbas B. Seismic Energy Demand in Steel Moment Frames. Journal of Earthquake Engineering, 3(4): 519-559;1999.
  • [4] Dogru S., Aksar B., Akbas B., Shen J., Doran B. Multi-Level Seismic Energy Demands In Steel Moment Frames. Eighth National Conference on Earthquake Engineering, Istanbul Technical University, May 11-14;2015.
  • [5] Chopra A.K. Dynamics of Structures. Theory and Applications to Earthquake Engineering. Prentice-Hall, Inc., New Jersey;2010.
  • [6] Housner GW. Limit Design of Structures to Resist Earthquakes. In Proceedings of the First World Conference on Earthquake Engineering, Berkeley, California, 5-1-5-13; 1956.
  • [7] Akiyama H. Earthquake-Resistant Limit-State Design for Buildings. University of Tokyo Press;1985.
  • [8] Akbas B, Shen J, and Hao H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective. The Structural Design of Tall Buildings , 10:193-217;2001.
  • [9] Choi, H. and Kim, J. Energy-based Seismic Design of Buckling-Retrained Braced Frames using Hysteretic Energy Spectrum. Engineering Structures, 28(2), pp.304-311;2006.
  • [10] Bojorquez, E., Ruiz, S., Teran-Gilmore, A. Reliability-based Evaluation of Steel Structures using Energy Concepts. Engineering Structures, 30(6), pp.1745-1759;2008.
  • [11] Gong ,Y., Xue Y., Xu,L., Grierson, Donald E. Energy-based design optimization of steel building frameworks using nonlinear response history analysis. Journal of Constructional Steel Research, Volume 68, Issue 1, Pages 43-50; January 2012.
  • [12] Paolacci, F. An Energy-based Design for Seismic Resistant Structures with Viscoelastic Dampers.”, Earthquake and Structures, 4(2), pp.219-239;2013.
  • [13] Dogru, S., Aksar, B.,Akbas, B., Shen, J., Seker, O., Wen, R. Seismic Energy Demands in Steel Moment Frames. Applied Mechanics and Materials, Vol. 847, pp. 210-221;2016.
  • [14] Dogru, S., Aksar, B., Akbas, B., Shen, J. Parametric Study on Energy Demands for Special Steel Concentrically Braced Frames. Steel and Composite Structures, Vol. 24, No. 2, June; 2017.
  • [15] Doğru, S., Akşar, B., Akbaş, B., Shen, J., Doran, B. Seismic Energy Demands of Inverted V-Braced Frames. In: Kasimzade A., Şafak E., Ventura C., Naeim F., Mukai Y. (eds) Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering. Springer, Cham; 2019.
  • [16] Akşar, B , Doğru, S , Akbaş, B . "Çelik moment çerçevelerde kuvvetli deprem yer hareketi altında arttırılmış deprem etkileri". Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33:2, 441-457; 2018.
  • [17] Hou.H., Qu,B. Duration effect of spectrally matched ground motions on seismic demands of elastic perfectly plastic SDOFS. Engineering Structures, Volume 90, 2015, Pages 48-60 ;2015.
  • [18] ASCE 7-10 . Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, Reston, VA. ;2010
  • [19] AISC 341-10. Seismic Provisions for Steel Structural Buildings. American Institute of Steel Construction. American Institute of Steel Construction. Chicago, IL;2010
  • [20] AISC 360-10 . Specification for Structural Steel Buildings. American Institute of Steel Construction. American Institute of Steel Construction. Chicago, IL ;2010 .
  • [21] AISC 358-10 . Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. American Institute of Steel Construction. Chicago, IL ;2010 .
  • [22] PEER Database, Peer.berkeley.edu/peer_ground_motion_database. Pacific Earthquake Engineering Research Center, 325 Davis Hall, University of California, Berkeley.
  • [23] PERFORM-3D . Nonlinear Analysis and Performance Assessment for 3D Structures,Version5 ;2011.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Selçuk Doğru 0000-0003-4901-4967

Bülent Akbaş 0000-0003-4846-750X

Publication Date April 7, 2020
Submission Date October 4, 2018
Acceptance Date November 27, 2019
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Doğru, S., & Akbaş, B. (2020). Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1111-1128. https://doi.org/10.17341/gazimmfd.467172
AMA Doğru S, Akbaş B. Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri. GUMMFD. April 2020;35(3):1111-1128. doi:10.17341/gazimmfd.467172
Chicago Doğru, Selçuk, and Bülent Akbaş. “Süneklik düzeyi yüksek Moment Aktaran çelik çerçevelerin Sismik Enerji Istemleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 3 (April 2020): 1111-28. https://doi.org/10.17341/gazimmfd.467172.
EndNote Doğru S, Akbaş B (April 1, 2020) Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1111–1128.
IEEE S. Doğru and B. Akbaş, “Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri”, GUMMFD, vol. 35, no. 3, pp. 1111–1128, 2020, doi: 10.17341/gazimmfd.467172.
ISNAD Doğru, Selçuk - Akbaş, Bülent. “Süneklik düzeyi yüksek Moment Aktaran çelik çerçevelerin Sismik Enerji Istemleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (April 2020), 1111-1128. https://doi.org/10.17341/gazimmfd.467172.
JAMA Doğru S, Akbaş B. Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri. GUMMFD. 2020;35:1111–1128.
MLA Doğru, Selçuk and Bülent Akbaş. “Süneklik düzeyi yüksek Moment Aktaran çelik çerçevelerin Sismik Enerji Istemleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 1111-28, doi:10.17341/gazimmfd.467172.
Vancouver Doğru S, Akbaş B. Süneklik düzeyi yüksek moment aktaran çelik çerçevelerin sismik enerji istemleri. GUMMFD. 2020;35(3):1111-28.