Research Article
BibTex RIS Cite
Year 2020, Volume: 35 Issue: 3, 1575 - 1588, 07.04.2020
https://doi.org/10.17341/gazimmfd.539985

Abstract

References

  • IEEE Standard for Information technology— Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, 2016.
  • IEEE Standard for Wireless Access in Vehicular Environments (WAVE) — Multi-Channel Operation, IEEE 1609.4, 2016.
  • Hassler S., Self-driving cars and trucks are on the move [Spectral Lines], IEEE Spectrum, 54(1), 6-6, 2017.
  • IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE 802.11p, 2010.
  • Bianchi G., Performance analysis of the IEEE 802.11 distributed coordination function, IEEE Journal on Selected Areas in Communications, 18(3), 535–547, 2000.
  • Zheng J., Wu Q., Performance modeling and analysis of the IEEE 802.11p EDCA mechanism for VANET, IEEE Transactions on Vehicular Technology, 65(4), 2673-2687, 2016.
  • Shah A.F.M.S., Mustari N., Modeling and performance analysis of the IEEE 802.11p enhanced distributed channel access function for vehicular network, IEEE Future Technologies Conference (FTC), San Francisco, United States, 173-178, 2016.
  • Shah A.F.M.S., Karabulut M.A., Ilhan H., “Performance modeling and analysis of the IEEE 802.11 EDCAF for VANETs,” in: Arai K., Kapoor S., Bhatia R. (eds): Advances in Intelligent Systems and Computing, 869, 34-46, Springer, Cham, 2019.
  • Hassan Md.I., Vu H.L., Sakurai T., Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications, IEEE Transactions on Vehicular Technology, 60(8), 3882-3896, 2011.
  • Akhtar N., Ergen S.C., Ozkasap O., Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation, IEEE Transactions on Vehicular Technology, 64(1), 248-262, 2015.
  • Luan T.H., Ling X., Shen X., MAC in motion: impact of mobility on the MAC of drive-thru internet, IEEE Transactions on Mobile Computing, 11(2), 305-319, 2012.
  • Wu Q., Zheng J., Performance modeling of IEEE 802.11 DCF based fair channel access for vehicular-to-roadside communication in a non-saturated state, IEEE ICC, 1-4, 2014.
  • Yang Q., Xing S., Xia W. and Shen L., Modelling and performance analysis of dynamic contention window scheme for periodic broadcast in vehicular ad hoc networks, IET Communications, 9(11), 1347-1354, 2015.
  • Karabulut M.A., Shah A.F.M.S., Ilhan H., The performance of the IEEE 802.11 DCF for different contention window in VANETs, 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, 1-4, 2018.
  • Karabulut M.A., Shah A.F.M.S., Ilhan H., The effect of contention window size of the IEEE 802.11 DCF for VANETs, 26th Signal Processing and Communications Applications Conference (SIU), Izmir, 1-4, 2018.
  • Deng D.-J., Ke C.-H., Chen H.-H., and Huang Y.-M., Contention window optimization for IEEE 802.11 DCF access control, IEEE Transactions on Wireless Communications, 7(12), 5129-5135, 2008.
  • Lei L., Chai S., Chen X, Song X.V. and Sakurai T., Modeling and analyzing the optimal contention window size for distributed synchronization in ad hoc networks, IEEE Communication Letter, 21(12), 390-393, 2017.
  • Zang Y., Stibor L., Walke B., Reumerman H.-J. and Barroso A., A Novel MAC protocol for throughput sensitive applications in vehicular environments, IEEE 65th Vehicular Technology Conference VTC-2007 Spring, 2580-2584, 2007.
  • Kühlmorgen S., Festag A., Fettweis G., Impact of decentralized congestion control on contention-based forwarding in VANETs, IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 1-7, 2016.
  • Karabulut M.A., Shah A.F.M.S., Ilhan H., Performance modeling and analysis of the IEEE 802.11 DCF for VANETs, IEEE 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Münih, Almanya, 341-346, 2017.
  • Yao Y., Rao L., Liu X., Performance reliability analysis of IEEE 802.11p safety communication in a highway environment, IEEE Trans. on Vehicular Technology, 62(9), 4198-4212, 2013.

IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi

Year 2020, Volume: 35 Issue: 3, 1575 - 1588, 07.04.2020
https://doi.org/10.17341/gazimmfd.539985

Abstract

IEEE 802.11 standardı, araçlar arası
geçici ağlar (Vehicular Ad Hoc Networks, VANETs) için ortam erişim kontrolü (Medium
Access Control, MAC) ve fiziksel (PHY) katmanının özelliklerini tanımlamaktadır.
IEEE 802.11 standardında, dağıtılmış koordinasyon işlevi (Distributed
Coordination Function, DCF) MAC katmanında kullanılan bir tekniktir. DCF,
ortama erişmek için çarpışmadan kaçınma ile taşıyıcı duyarlı çoklu erişim
(Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA) tekniğini kullanmaktadır.
Ayrıca, gönderim isteği (Request To Send, RTS)/ gönderime uygun (Clear To Send,
CTS) mekanizması gizli araç düğümleri problemlerinin üstesinden gelmek için
kullanılır. Bu makalede, VANET ağlarda önerilen CSMA/CA tabanlı protokolün
performansını değerlendirmek için araç hızı, araç yoğunluğu, çekişme penceresi
(Contention Window) ve yeniden iletim limiti (Maximum Retransmision Limit) gibi
parametreleri dikkate alan Markov zincir modeline dayalı bir analitik model
önerilmiştir. Performans ölçüleri ve parametreleri arasındaki ilişki
incelenmiştir. Veri hızı, paket bırakma oranı (Packet Dropping Rate, PDR) ve
gecikme ifadeleri elde edilmiştir. Ayrıca, benzetim sonuçları ile performans
analizi doğrulanmıştır. CSMA/CA ve RTS/CTS mekanizmalarının karşılaştırılması
sunulmuştur. 

References

  • IEEE Standard for Information technology— Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, 2016.
  • IEEE Standard for Wireless Access in Vehicular Environments (WAVE) — Multi-Channel Operation, IEEE 1609.4, 2016.
  • Hassler S., Self-driving cars and trucks are on the move [Spectral Lines], IEEE Spectrum, 54(1), 6-6, 2017.
  • IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE 802.11p, 2010.
  • Bianchi G., Performance analysis of the IEEE 802.11 distributed coordination function, IEEE Journal on Selected Areas in Communications, 18(3), 535–547, 2000.
  • Zheng J., Wu Q., Performance modeling and analysis of the IEEE 802.11p EDCA mechanism for VANET, IEEE Transactions on Vehicular Technology, 65(4), 2673-2687, 2016.
  • Shah A.F.M.S., Mustari N., Modeling and performance analysis of the IEEE 802.11p enhanced distributed channel access function for vehicular network, IEEE Future Technologies Conference (FTC), San Francisco, United States, 173-178, 2016.
  • Shah A.F.M.S., Karabulut M.A., Ilhan H., “Performance modeling and analysis of the IEEE 802.11 EDCAF for VANETs,” in: Arai K., Kapoor S., Bhatia R. (eds): Advances in Intelligent Systems and Computing, 869, 34-46, Springer, Cham, 2019.
  • Hassan Md.I., Vu H.L., Sakurai T., Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications, IEEE Transactions on Vehicular Technology, 60(8), 3882-3896, 2011.
  • Akhtar N., Ergen S.C., Ozkasap O., Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation, IEEE Transactions on Vehicular Technology, 64(1), 248-262, 2015.
  • Luan T.H., Ling X., Shen X., MAC in motion: impact of mobility on the MAC of drive-thru internet, IEEE Transactions on Mobile Computing, 11(2), 305-319, 2012.
  • Wu Q., Zheng J., Performance modeling of IEEE 802.11 DCF based fair channel access for vehicular-to-roadside communication in a non-saturated state, IEEE ICC, 1-4, 2014.
  • Yang Q., Xing S., Xia W. and Shen L., Modelling and performance analysis of dynamic contention window scheme for periodic broadcast in vehicular ad hoc networks, IET Communications, 9(11), 1347-1354, 2015.
  • Karabulut M.A., Shah A.F.M.S., Ilhan H., The performance of the IEEE 802.11 DCF for different contention window in VANETs, 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, 1-4, 2018.
  • Karabulut M.A., Shah A.F.M.S., Ilhan H., The effect of contention window size of the IEEE 802.11 DCF for VANETs, 26th Signal Processing and Communications Applications Conference (SIU), Izmir, 1-4, 2018.
  • Deng D.-J., Ke C.-H., Chen H.-H., and Huang Y.-M., Contention window optimization for IEEE 802.11 DCF access control, IEEE Transactions on Wireless Communications, 7(12), 5129-5135, 2008.
  • Lei L., Chai S., Chen X, Song X.V. and Sakurai T., Modeling and analyzing the optimal contention window size for distributed synchronization in ad hoc networks, IEEE Communication Letter, 21(12), 390-393, 2017.
  • Zang Y., Stibor L., Walke B., Reumerman H.-J. and Barroso A., A Novel MAC protocol for throughput sensitive applications in vehicular environments, IEEE 65th Vehicular Technology Conference VTC-2007 Spring, 2580-2584, 2007.
  • Kühlmorgen S., Festag A., Fettweis G., Impact of decentralized congestion control on contention-based forwarding in VANETs, IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 1-7, 2016.
  • Karabulut M.A., Shah A.F.M.S., Ilhan H., Performance modeling and analysis of the IEEE 802.11 DCF for VANETs, IEEE 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Münih, Almanya, 341-346, 2017.
  • Yao Y., Rao L., Liu X., Performance reliability analysis of IEEE 802.11p safety communication in a highway environment, IEEE Trans. on Vehicular Technology, 62(9), 4198-4212, 2013.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Muhammet Ali Karabulut 0000-0002-2080-5485

A.f.m. Shahen Shah 0000-0002-3133-6557

Hacı İlhan 0000-0002-6949-6126

Publication Date April 7, 2020
Submission Date March 14, 2019
Acceptance Date February 26, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Karabulut, M. A., Shah, A. S., & İlhan, H. (2020). IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1575-1588. https://doi.org/10.17341/gazimmfd.539985
AMA Karabulut MA, Shah AS, İlhan H. IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi. GUMMFD. April 2020;35(3):1575-1588. doi:10.17341/gazimmfd.539985
Chicago Karabulut, Muhammet Ali, A.f.m. Shahen Shah, and Hacı İlhan. “IEEE 802.11 MAC Protokolünün VANET ağlardaki Performans Modellemesi Ve Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 3 (April 2020): 1575-88. https://doi.org/10.17341/gazimmfd.539985.
EndNote Karabulut MA, Shah AS, İlhan H (April 1, 2020) IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1575–1588.
IEEE M. A. Karabulut, A. S. Shah, and H. İlhan, “IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi”, GUMMFD, vol. 35, no. 3, pp. 1575–1588, 2020, doi: 10.17341/gazimmfd.539985.
ISNAD Karabulut, Muhammet Ali et al. “IEEE 802.11 MAC Protokolünün VANET ağlardaki Performans Modellemesi Ve Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (April 2020), 1575-1588. https://doi.org/10.17341/gazimmfd.539985.
JAMA Karabulut MA, Shah AS, İlhan H. IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi. GUMMFD. 2020;35:1575–1588.
MLA Karabulut, Muhammet Ali et al. “IEEE 802.11 MAC Protokolünün VANET ağlardaki Performans Modellemesi Ve Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 1575-88, doi:10.17341/gazimmfd.539985.
Vancouver Karabulut MA, Shah AS, İlhan H. IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi. GUMMFD. 2020;35(3):1575-88.