Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of zinc contents on the structural, mechanical and tribological properties of EN AC-48100 (Al-17Si-4Cu-Mg) alloy

Yıl 2020, Cilt: 35 Sayı: 4, 1799 - 1814, 21.07.2020
https://doi.org/10.17341/gazimmfd.602161

Öz

In this study, Al-17Si-4Cu-0.6Mg-0.2Ti which is based of the EN AC-48100 alloy not containing zinc, Al-17Si-4Cu-0.6Mg-0.2Ti-1Zn,
Al-17Si-4Cu-0.6Mg-0.2Ti-2Zn, Al- 17Si-4Cu-0.6Mg-0.2Ti-3Zn, Al-17Si-4Cu-0.6Mg-0.2Ti-4Zn
and Al-17Si-4Cu-0.6Mg-0.2Ti-5Zn alloys were produced by permanent mold casting
method. Chemical composition of the produced alloys was determined by the spark
optical emission spectrometer method. The microstructures of the alloys were
examined by optical and scanning electron microscopy. The hardness and
microhardness of the alloys were determined by Brinell and Vickers measurement
methods, respectively, and their mechanical properties were determined by
tensile tests performed by a universal test machine.  It was observed that the microstructure of the
Al-17Si-4Cu-0.6Mg-0.2Ti-(0-5) Zn alloys consisted of aluminum-rich α, eutectic
Al-Si, primary silicon, copper-rich θ (CuAl2), Mg2Si and
π phases. It was also observed that zinc additions did not lead to a new phase
formation in the Al-17Si-4Cu-0.6Mg-0.2Ti alloy. The hardness of the produced
alloys increased with increasing zinc content, but yield and tensile strength
and wear resistance increased up to 3% zinc content and decreased after this
ratio. Smearing layers, fine scratches and peeling occurred are seen on the
surfaces of the wear samples. The morphology of the wear particles collected after
wear tests did not show significant change with the zinc content. The results
obtained from the mechanical and tribological tests of the produced alloys were
discussed in terms of the microstructural features of the alloys.

Kaynakça

  • 1. Medrano-Prieto, H.M., Garay-Reyes, C.G., Gómez-Esparza, C.D., Aguilar-Santillán, J., Maldonado-Orozco, M.C., Martínez-Sánchez, R., Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness, Materials Research, 19 (1), 59-66, 2016.
  • 2. Kaba, M., Donmez, A., Cukur, A., Kurban, A.F., Cubuklusu, H.E., Birol, Y., AlSi5Mg0.3 Alloy for the manufacture of automotive wheels, International Journal of Metal Casting, 12 (3), 614-624, 2018.
  • 3. Kang, N., Coddet, P., Liao, H., Baur, T., Coddet, C., Wear behavior andmicrostructure of hypereutectic Al-Si alloys prepared by selective laser melting, Applied Surface Science, 378, 142-149, 2016.
  • 4. Hiromi, N., Wu, Y., Recent progress in eutectic silicon modification of Al-Si alloys, Special Casting and Nonferrous Alloys, 36 (9), 924-930, 2016.
  • 5. Li, Q., Li, B., Li, J., Xia, T., Lan, Y., Guo, T., Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7%Si alloy, International Journal of Metalcasting, 11 (4), 823-830, 2017.
  • 6. Prabhudev, M.S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N.H., Kori, S.A, Influence of Cu addition on dry sliding wear behaviour of A356 alloy, Procedia Engineering, 97, 1361-1367, 2014.
  • 7. Lee, S.L., Cheng, Y.C., Chen, W.C., Lee, C.K., Tan, A.H., Effects of strontium and heat treatment on the wear-corrosion property of Al-7Si-0.3Mg alloy, Materials Chemistry and Physics, 135 (2-3), 503-509, 2012.
  • 8. Kumar, S., Tewari, S.P., Metallurgical and mechanical characterization of A319 aluminum alloy casting solidified under mold oscillation, International Journal of Metalcasting, 12(1), 28-35, 2018.
  • 9. Davis, J.R., Aluminum and Aluminum Alloys, ASM Specialty Handbook, Cilt 3, ASM International, Materials Park, OH, A.B.D, 1993.
  • 10. Lu, L., Dahle, A.K., Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys, Materials Science and Engineering, 435, 288-296, 2006.
  • 11. Davis, J.R., Alloying: Understanding the Basics, ASM International, Materials Park, OH, 2001.
  • 12. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., Vieregge A., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A, 280 (1), 37-49, 2000.
  • 13. Jorstad, J., Apelian, D., Hypereutectic Al-Si alloys: Practical casting considerations, International Journal of Metalcasting, 3 (3), 13-36, 2009.
  • 14. Hekimoğlu, A.P., Hacıosmanoğlu M., Mıcrostructure and mechanical properties of Al-(2-30)Si alloys, 3nd International Conference on Material Science and Technology in Cappadocia (IMSTEC’18), Nevşehir-Türkiye, 1-6, 17-19 Eylül, 2018.
  • 15. Aybarç U., Kara A., Çubuklusu H.E., Çe Ö.B., Effect of hot isostatic pressing on metallurgical and mechanical properties of A356 alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4),1327-1335, 2017.
  • 16. Qi, M., Kang, Y., Qiu, Q., Tang, W., Li, J., Li, B., Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure die-casting, Journal of Alloys and Compounds, 749, 487-502, 2018.
  • 17. Wu, C.T., Lee, S.L., Hsieh, M.H., Lin, J.C., Effects of Cu content on microstructure and mechanical properties of Al-14.5Si-0.5Mg alloy, Materials Characterization, 61 (11), 1074-1079, 2010.
  • 18. Zeren, M., Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, Journal of Materials Processing Technology, 169 (2), 292-298, 2005.
  • 19. Farkoosh, A.R., Pekguleryuz, M., Enhanced mechanical properties of an Al-Si-Cu-Mg alloy at 300°C: Effects of Mg and the Q-precipitate phase, Materials Science and Engineering A, 621, 277-286, 2015.
  • 20. Li, Z., Samuel, A.M., Samuel, F.H., Ravindran, C., Valtierra, S., Effect of alloying elements on the segregation and dissolution of CuAl 2 phase in Al-Si-Cu 319 alloys, Journal of Materials Science, 38 (6), 1203-1218, 2003.
  • 21. Alfonso, I., Maldonado, C., Gonzalez, G., Bedolla, A., Effect of Mg content and solution treatment on the microstructure of Al-Si-Cu-Mg alloys, Journal of Materials Science, 41 (7), 1945-1952, 2006.
  • 22. Hekimoğlu, A.P., Ayata, G., Effect of strontium and strontium-magnesium additions on the microstructure and mechanical properties of hypereutectic Al-17Si alloy, Pamukkale Univiversitesi Muhendislik Bilimleri Dergisi, 25 (1), 49-55, 2019.
  • 23. Huiyuan, G., Yanxiang, L., Xiang, C., Xue, W., Effects of boron on eutectic solidification in hypoeutectic Al-Si alloys, Scripta Materialia, 53 (1), 69-73, 2005.
  • 24. Lu, L., Nogita, K., Dahle, A.K., Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys, Materials Science and Engineering A, 399 (1-2), 244-253, 2005.
  • 25. Liu, M.X., Chen, J.M., The influence of the Al-Ti-B/Al-Sr modification on the microstructure and properties of the hypereutectic Al-Si alloy in automotive piston, Advanced Materials Research, 744, 339-344, 2013.
  • 26. Kumar, A., Sasikumar, C., Effect of vanadium addition to Al-Si alloy on its mechanical, tribological and microstructure properties, Materials Today: Proceedings, 4 (2), 307-313, 2017.
  • 27. Hwang, J.Y., Doty, H.W., Kaufman, M.J., The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys, Materials Science and Engineering A, 488 (1-2), 496-504, 2008.
  • 28. Kim, K.J., Kim, H.J., Jeong, C.Y., Mechanical and die soldering properties of Al-Si-Mg-Mn cast alloy, Materials Research Innovations, 18 (2), 2666-2672, 2014.
  • 29. Alemdağ, Y., Beder, M., Microstructural, mechanical and tribological properties of Al–7Si–(0–5)Zn alloys, Materials and Design, 63, 159–167, 2014.
  • 30. Hekimoğlu, A.P., Turan, Y.E., Çinko oranının Al-(5-50)Zn alaşımlarının yapısal ve mekanik özelliklerine etkisi, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (1), 16-25, 2018.
  • 31. Savaşkan, T., Pürçek, G., Murphy, S., Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions, Wear, 252 (9-10), 693-703, 2002.
  • 32. Pürçek, G., Savaşkan, T., Küçükömeroğlu, T., Murphy, S., Dry sliding friction and wear properties of zinc-based alloys, Wear, 252 (11-12), 894-901, 2002.
  • 33. Alemdağ, Y., Beder, M., Dry sliding wear properties of Al-7Si-4Zn-(0-5)Cu alloys, 8th Internatıonal Conference On Tribology, Romanya, 30 Ekim-1 Kasım, 2015.
  • 34. Escalera-Lozan, R., Pech-Canul, M.I., Pech-Canul, M. A., Montoya-Dávila, M., Uribe-Salas A., The Role of Mg2Si in the Corrosion Behavior of Al-Si-Mg Alloys for Pressureless Infiltration, The Open Corrosion Journal, 3, 73-79, 2010.
  • 35. Medrano-Prieto, H.M., Garay-Reyes, C.G., Gómez-Esparza, C.D., Aguilar-Santillán, J., Maldonado-Orozco, M.C., Martínez-Sánchez, R., Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness, Materials Research, 19, 59-66, 2016.
  • 36. Belov N.A., Aksenov, A.A., Eskin, D.G., Iron in aluminium alloys: ımpurity and alloying element, Cilt 1, CRC Press, 2002.
  • 37. Kores, S., Vončina, M., Kosec, B., Medved, J., Formation of ALFeSi phasein ALSi12 alloy with Ce addition, Metalurgija, 51 (2), 216-220, 2012.
  • 38. Okamoto, H., Schlesinger, M.E., Mueller, E.M., ASM Handbook Volume 3:Alloy Phase Diagrams, ASM International, Materials Park, OH, A.B.D, 2016.
  • 39. Tavitas-Medrano, F.J., Mohamed, A.M.A., Gruzleski, J.E., Samuel, F.H., Doty, H.W., Precipitation-hardening in cast AL-Si-Cu-Mg alloys. Journal of Materials Science, 45 (3), 641-651, 2010.
  • 40. Chen, R.H., Cao, R., Micromechanism of cleavage fracture of metals : a comprehensive microphysical model for cleavage cracking in metals, Cilt 1, Elsevier, 2015.
  • 41. Xu, C., Wang, F., Mudassar, H., Wang, C., Hanada, S., Xiao, W., Ma, C., Effect of Sc and Sr on the eutectic Si morphology and tensile properties of Al-Si-Mg alloy, Journal of Materials Engineering and Performance, 26 (4), 1605-1613, 2017.
  • 42. Jeon, J.H., Shin, J.H., Bae, D.H., Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys, Materials Science and Engineering A, 748, 367-370, 2019.
  • 43. Jiao, X.Y., Wang, J., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y., Zhang, Y.F., Xiong, S.M., Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology, Journal of Materials Science and Technology, 35(6), 1099-1107, 2019.
  • 44. Hutchings, I., Shipway, P., Tribology friction and wear of engineering materials, Cilt 2, Butterworth-Heinemann, 2017.
  • 45. Stachowiak, G.W. Batchelor, A.W., Engineering Tribology, Cilt 3, Butterworth-Heinemann, 2005.
  • 46. Savaşkan, T., Hekimoğlu, A.P., Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys, International Journal of Materials Research, 107 (7), 646-652, 2016.
  • 47. Savaşkan, T., Hekimoğlu, A.P., Basınç ve kayma hızının Zn-15Al-3Cu alaşımının yağsız çalışma durumundaki sürtünme ve aşınma özelliklerine etkilerinin incelenmesi, Haliç Üniversitesi Fen Bilimleri Dergisi, 1, 1-26, 2018.

Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi

Yıl 2020, Cilt: 35 Sayı: 4, 1799 - 1814, 21.07.2020
https://doi.org/10.17341/gazimmfd.602161

Öz

Bu çalışmada EN AC-48100 esasını
oluşturan ve çinko içermeyen bir adet Al-17Si-4Cu-0,6Mg-0,2Ti ve farklı
oranlarda çinko (Zn) içeren beş adet Al-17Si-4Cu-0,6Mg-0,2Ti-Zn alaşımı kokil
kalıba döküm yöntemi ile üretildi. Üretilen alaşımların kimyasal bileşimleri
spark optik emisyon spektrometresi yöntemi ile belirlenerek doğrulandı. İçyapıları
ise ışık ve taramalı elektron mikroskobu yardımıyla incelendi. Alaşımların
sertliği ve mikrosertliği sırasıyla Brinell ve Vickers ölçüm yöntemleri, mekanik
özellikleri ise üniversal bir test makinesinde yapılan çekme deneyleri ile
belirlendi. Bu incelemeler sonucunda Al-17Si-4Cu-0,6Mg-0,2Ti-(0-5)Zn
alaşımlarının içyapısının alüminyumca zengin α, ötektik Al-Si, primer silisyum,
bakırca zengin θ (CuAl2), Mg2Si ve π fazlarından
oluştuğu, çinko ilavelerinin Al-17Si-4Cu-0,6Mg-0,2Ti alaşımının içyapısında
yeni bir fazın oluşmasına yol açmadığı görüldü. Üretilen alaşımların sertliğinin
artan çinko katkısıyla arttığı, akma, çekme dayanımı ve aşınma direncinin ise
%3 Zn oranına kadar arttığı bu orandan sonra ise azaldığı belirlendi. Aşınma
deneyleri sonucunda alaşım örneklerinin yüzeylerinde sıvama tabakalarının, ince
çiziklerin ve soyulmaların oluştuğu gözlendi. Aşınma deneylerinden sonra toplanan
aşınma parçacıklarının morfolojisinin çinko oranıyla fazla değişmediği görüldü.
İncelenen alaşımların mekanik ve tribolojik deneylerinden elde edilen bulgular
yapısal özelliklerine dayandırılarak irdelendi.  

Kaynakça

  • 1. Medrano-Prieto, H.M., Garay-Reyes, C.G., Gómez-Esparza, C.D., Aguilar-Santillán, J., Maldonado-Orozco, M.C., Martínez-Sánchez, R., Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness, Materials Research, 19 (1), 59-66, 2016.
  • 2. Kaba, M., Donmez, A., Cukur, A., Kurban, A.F., Cubuklusu, H.E., Birol, Y., AlSi5Mg0.3 Alloy for the manufacture of automotive wheels, International Journal of Metal Casting, 12 (3), 614-624, 2018.
  • 3. Kang, N., Coddet, P., Liao, H., Baur, T., Coddet, C., Wear behavior andmicrostructure of hypereutectic Al-Si alloys prepared by selective laser melting, Applied Surface Science, 378, 142-149, 2016.
  • 4. Hiromi, N., Wu, Y., Recent progress in eutectic silicon modification of Al-Si alloys, Special Casting and Nonferrous Alloys, 36 (9), 924-930, 2016.
  • 5. Li, Q., Li, B., Li, J., Xia, T., Lan, Y., Guo, T., Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7%Si alloy, International Journal of Metalcasting, 11 (4), 823-830, 2017.
  • 6. Prabhudev, M.S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N.H., Kori, S.A, Influence of Cu addition on dry sliding wear behaviour of A356 alloy, Procedia Engineering, 97, 1361-1367, 2014.
  • 7. Lee, S.L., Cheng, Y.C., Chen, W.C., Lee, C.K., Tan, A.H., Effects of strontium and heat treatment on the wear-corrosion property of Al-7Si-0.3Mg alloy, Materials Chemistry and Physics, 135 (2-3), 503-509, 2012.
  • 8. Kumar, S., Tewari, S.P., Metallurgical and mechanical characterization of A319 aluminum alloy casting solidified under mold oscillation, International Journal of Metalcasting, 12(1), 28-35, 2018.
  • 9. Davis, J.R., Aluminum and Aluminum Alloys, ASM Specialty Handbook, Cilt 3, ASM International, Materials Park, OH, A.B.D, 1993.
  • 10. Lu, L., Dahle, A.K., Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys, Materials Science and Engineering, 435, 288-296, 2006.
  • 11. Davis, J.R., Alloying: Understanding the Basics, ASM International, Materials Park, OH, 2001.
  • 12. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., Vieregge A., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A, 280 (1), 37-49, 2000.
  • 13. Jorstad, J., Apelian, D., Hypereutectic Al-Si alloys: Practical casting considerations, International Journal of Metalcasting, 3 (3), 13-36, 2009.
  • 14. Hekimoğlu, A.P., Hacıosmanoğlu M., Mıcrostructure and mechanical properties of Al-(2-30)Si alloys, 3nd International Conference on Material Science and Technology in Cappadocia (IMSTEC’18), Nevşehir-Türkiye, 1-6, 17-19 Eylül, 2018.
  • 15. Aybarç U., Kara A., Çubuklusu H.E., Çe Ö.B., Effect of hot isostatic pressing on metallurgical and mechanical properties of A356 alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4),1327-1335, 2017.
  • 16. Qi, M., Kang, Y., Qiu, Q., Tang, W., Li, J., Li, B., Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure die-casting, Journal of Alloys and Compounds, 749, 487-502, 2018.
  • 17. Wu, C.T., Lee, S.L., Hsieh, M.H., Lin, J.C., Effects of Cu content on microstructure and mechanical properties of Al-14.5Si-0.5Mg alloy, Materials Characterization, 61 (11), 1074-1079, 2010.
  • 18. Zeren, M., Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, Journal of Materials Processing Technology, 169 (2), 292-298, 2005.
  • 19. Farkoosh, A.R., Pekguleryuz, M., Enhanced mechanical properties of an Al-Si-Cu-Mg alloy at 300°C: Effects of Mg and the Q-precipitate phase, Materials Science and Engineering A, 621, 277-286, 2015.
  • 20. Li, Z., Samuel, A.M., Samuel, F.H., Ravindran, C., Valtierra, S., Effect of alloying elements on the segregation and dissolution of CuAl 2 phase in Al-Si-Cu 319 alloys, Journal of Materials Science, 38 (6), 1203-1218, 2003.
  • 21. Alfonso, I., Maldonado, C., Gonzalez, G., Bedolla, A., Effect of Mg content and solution treatment on the microstructure of Al-Si-Cu-Mg alloys, Journal of Materials Science, 41 (7), 1945-1952, 2006.
  • 22. Hekimoğlu, A.P., Ayata, G., Effect of strontium and strontium-magnesium additions on the microstructure and mechanical properties of hypereutectic Al-17Si alloy, Pamukkale Univiversitesi Muhendislik Bilimleri Dergisi, 25 (1), 49-55, 2019.
  • 23. Huiyuan, G., Yanxiang, L., Xiang, C., Xue, W., Effects of boron on eutectic solidification in hypoeutectic Al-Si alloys, Scripta Materialia, 53 (1), 69-73, 2005.
  • 24. Lu, L., Nogita, K., Dahle, A.K., Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys, Materials Science and Engineering A, 399 (1-2), 244-253, 2005.
  • 25. Liu, M.X., Chen, J.M., The influence of the Al-Ti-B/Al-Sr modification on the microstructure and properties of the hypereutectic Al-Si alloy in automotive piston, Advanced Materials Research, 744, 339-344, 2013.
  • 26. Kumar, A., Sasikumar, C., Effect of vanadium addition to Al-Si alloy on its mechanical, tribological and microstructure properties, Materials Today: Proceedings, 4 (2), 307-313, 2017.
  • 27. Hwang, J.Y., Doty, H.W., Kaufman, M.J., The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys, Materials Science and Engineering A, 488 (1-2), 496-504, 2008.
  • 28. Kim, K.J., Kim, H.J., Jeong, C.Y., Mechanical and die soldering properties of Al-Si-Mg-Mn cast alloy, Materials Research Innovations, 18 (2), 2666-2672, 2014.
  • 29. Alemdağ, Y., Beder, M., Microstructural, mechanical and tribological properties of Al–7Si–(0–5)Zn alloys, Materials and Design, 63, 159–167, 2014.
  • 30. Hekimoğlu, A.P., Turan, Y.E., Çinko oranının Al-(5-50)Zn alaşımlarının yapısal ve mekanik özelliklerine etkisi, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (1), 16-25, 2018.
  • 31. Savaşkan, T., Pürçek, G., Murphy, S., Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions, Wear, 252 (9-10), 693-703, 2002.
  • 32. Pürçek, G., Savaşkan, T., Küçükömeroğlu, T., Murphy, S., Dry sliding friction and wear properties of zinc-based alloys, Wear, 252 (11-12), 894-901, 2002.
  • 33. Alemdağ, Y., Beder, M., Dry sliding wear properties of Al-7Si-4Zn-(0-5)Cu alloys, 8th Internatıonal Conference On Tribology, Romanya, 30 Ekim-1 Kasım, 2015.
  • 34. Escalera-Lozan, R., Pech-Canul, M.I., Pech-Canul, M. A., Montoya-Dávila, M., Uribe-Salas A., The Role of Mg2Si in the Corrosion Behavior of Al-Si-Mg Alloys for Pressureless Infiltration, The Open Corrosion Journal, 3, 73-79, 2010.
  • 35. Medrano-Prieto, H.M., Garay-Reyes, C.G., Gómez-Esparza, C.D., Aguilar-Santillán, J., Maldonado-Orozco, M.C., Martínez-Sánchez, R., Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness, Materials Research, 19, 59-66, 2016.
  • 36. Belov N.A., Aksenov, A.A., Eskin, D.G., Iron in aluminium alloys: ımpurity and alloying element, Cilt 1, CRC Press, 2002.
  • 37. Kores, S., Vončina, M., Kosec, B., Medved, J., Formation of ALFeSi phasein ALSi12 alloy with Ce addition, Metalurgija, 51 (2), 216-220, 2012.
  • 38. Okamoto, H., Schlesinger, M.E., Mueller, E.M., ASM Handbook Volume 3:Alloy Phase Diagrams, ASM International, Materials Park, OH, A.B.D, 2016.
  • 39. Tavitas-Medrano, F.J., Mohamed, A.M.A., Gruzleski, J.E., Samuel, F.H., Doty, H.W., Precipitation-hardening in cast AL-Si-Cu-Mg alloys. Journal of Materials Science, 45 (3), 641-651, 2010.
  • 40. Chen, R.H., Cao, R., Micromechanism of cleavage fracture of metals : a comprehensive microphysical model for cleavage cracking in metals, Cilt 1, Elsevier, 2015.
  • 41. Xu, C., Wang, F., Mudassar, H., Wang, C., Hanada, S., Xiao, W., Ma, C., Effect of Sc and Sr on the eutectic Si morphology and tensile properties of Al-Si-Mg alloy, Journal of Materials Engineering and Performance, 26 (4), 1605-1613, 2017.
  • 42. Jeon, J.H., Shin, J.H., Bae, D.H., Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys, Materials Science and Engineering A, 748, 367-370, 2019.
  • 43. Jiao, X.Y., Wang, J., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y., Zhang, Y.F., Xiong, S.M., Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology, Journal of Materials Science and Technology, 35(6), 1099-1107, 2019.
  • 44. Hutchings, I., Shipway, P., Tribology friction and wear of engineering materials, Cilt 2, Butterworth-Heinemann, 2017.
  • 45. Stachowiak, G.W. Batchelor, A.W., Engineering Tribology, Cilt 3, Butterworth-Heinemann, 2005.
  • 46. Savaşkan, T., Hekimoğlu, A.P., Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys, International Journal of Materials Research, 107 (7), 646-652, 2016.
  • 47. Savaşkan, T., Hekimoğlu, A.P., Basınç ve kayma hızının Zn-15Al-3Cu alaşımının yağsız çalışma durumundaki sürtünme ve aşınma özelliklerine etkilerinin incelenmesi, Haliç Üniversitesi Fen Bilimleri Dergisi, 1, 1-26, 2018.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Paşa Hekimoğlu 0000-0003-2396-4876

Murat Hacıosmanoğlu Bu kişi benim 0000-0002-9662-9510

Muzaffer Baki Bu kişi benim 0000-0001-6775-1982

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 5 Ağustos 2019
Kabul Tarihi 2 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 4

Kaynak Göster

APA Hekimoğlu, A. P., Hacıosmanoğlu, M., & Baki, M. (2020). Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 1799-1814. https://doi.org/10.17341/gazimmfd.602161
AMA Hekimoğlu AP, Hacıosmanoğlu M, Baki M. Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi. GUMMFD. Temmuz 2020;35(4):1799-1814. doi:10.17341/gazimmfd.602161
Chicago Hekimoğlu, Ali Paşa, Murat Hacıosmanoğlu, ve Muzaffer Baki. “Farklı Oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, Mekanik Ve Tribolojik özelliklerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 4 (Temmuz 2020): 1799-1814. https://doi.org/10.17341/gazimmfd.602161.
EndNote Hekimoğlu AP, Hacıosmanoğlu M, Baki M (01 Temmuz 2020) Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 1799–1814.
IEEE A. P. Hekimoğlu, M. Hacıosmanoğlu, ve M. Baki, “Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi”, GUMMFD, c. 35, sy. 4, ss. 1799–1814, 2020, doi: 10.17341/gazimmfd.602161.
ISNAD Hekimoğlu, Ali Paşa vd. “Farklı Oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, Mekanik Ve Tribolojik özelliklerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (Temmuz 2020), 1799-1814. https://doi.org/10.17341/gazimmfd.602161.
JAMA Hekimoğlu AP, Hacıosmanoğlu M, Baki M. Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi. GUMMFD. 2020;35:1799–1814.
MLA Hekimoğlu, Ali Paşa vd. “Farklı Oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, Mekanik Ve Tribolojik özelliklerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 1799-14, doi:10.17341/gazimmfd.602161.
Vancouver Hekimoğlu AP, Hacıosmanoğlu M, Baki M. Farklı oranlardaki çinko katkılarının AC-48100 (Al-17Si-4Cu-Mg) alaşımının yapısal, mekanik ve tribolojik özelliklerine etkisinin incelenmesi. GUMMFD. 2020;35(4):1799-814.