Research Article
BibTex RIS Cite

İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi

Year 2020, Volume: 35 Issue: 4, 1913 - 1922, 21.07.2020
https://doi.org/10.17341/gazimmfd.678683

Abstract

İnsanların uzun vakit geçirdikleri kapalı olanlar olan okul, ev, hastane gibi iç mekanlarda mikroorganizmalar duvar, zemin gibi yüzeylerde kolonize olmaktadır. Yüzeylere temas mikroorganizmalar ile çapraz kontaminasyonlar oluşturmakta ve buna bağlı olarak enfeksiyonlar meydana gelmektedir. Enfeksiyonları önlemek için yüzeyler çeşitli yöntemlerle antibakteriyel hale getirilmektedir. Bu yöntemlerden biri de duvar yüzeylerinin antibakteriyel boyalar ile kaplanmasıdır. Ancak kullanılan bir çok antibakteriyel boya uzun süre maruziyette toksik etki oluşturabilecek gümüşoksit, titanyumoksit gibi kimyasallar içermektedir. Bu çalışmada, insan ve çevreye toksik olmadığı bilinin SilQUAT biyositinin Gram pozitif ve Gram negatif temsilci bakterilerine karşı antibakteriyel etkisi araştırılmıştır. Bunun yanında biyositin kutu içerisinde koruyucu etkisi belirlenen bakteri, küf ve maya organizmalarına karşı da test edilmiştir. Deneylerin sonucunda biyositin güçlü antimikrobiyal etki gösterdiği belirlenmiştir.

Supporting Institution

İstanbul Üniversitesi Bilimsel Araştırma Birimi; Tübitak

Project Number

FKD-2017-23569 - BEK-2016-23307; 117M565

References

  • Hoque, J., Akkapeddi, P., Yadav, V., Manjunath, G.B., Divakara S. S. M. Uppu, Konai,M, M., Yarlagadda,V., Sanyal, K., Haldar, J., Broad Spectrum Antibacterial and Antifungal Polymeric Paint Materials: Synthesis, Structure−Activity Relationship, and Membrane-Active Mode of Action, ACS Appl. Mater. Interfaces, 7, 1804−1815, 2014.
  • Kocer, H.B., Cerkez, I., Worley, S. D., Broughton R. M., Huang, T.S., N-Halamine Copolymers for Use in Antimicrobial Paints, ACS Appl. Mater. Interfaces, 3, 3189–3194, 2011.
  • Verdier, T., Coutand, M., Bertron, A., Roques,C., A review of indoor microbial growth across building materials and sampling and analysis methods, Building and Environment, 80, 136- 149, 2014.
  • Elumalia, P., Elumalia, E.K., David, E., Fungi Associated with Deteriorations of Painted Wall Surfaces: Isolation and Identification, Europen Journals of Academic Essays, 1(3), 48-50, 2014.
  • Hwang, G.B., Patir, A., Allan, E., Nair, S., Parkin, I.P., Superhydrophobic and White Light-Activated Bactericidal Surface through a Simple Coating, ACS Appl. Mater. Interfaces, 1-28, 2017.
  • Kelley, S.T., Gilbert, J.A., Studying the microbiology of the indoor environment, Genome Biology,14(202), 2013.
  • Chase, J., Fouquier, J., Zare, M., Sonderegger, D.L., Knight, R., Kelley, S.T., Siegel, J., Caporaso, J.G., Geography and Location Are the Primary Drivers of Office Microbiome Composition, mSystems,1(2), 2016.
  • Maamar, S.B., Hu, J., Hartmann, E.M., Implications of indoor microbial ecology and evolution on antibiotic resistance, Journal of Exposure Science & Environmental Epidemiology, 2019.
  • Mukherjee, K., Rivera, J.J., Klibanov, A.M., Practical Aspects of Hydrophobic Polycationic Bactericidal “Paints”, Appl Biochem Biotechnol, 151, 61–70, 2008.
  • Krishnamoorth, K., Premanathan, M., Veerapandian, M., Kim, S.J., Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria, Nanotechnology, 25, 315101 (10pp), 2014.
  • Menceloğlu, Y. Z., Acatay, K., Simsek, E. ve Taralp, A., Preparation of substantially quaternized ammonium organosilane composition and selfstabilizing aqueous solution thereof, PCT/IB2010/051747, 2011.
  • ISO 22196:2011, Measurement of antibacterial activity on plastics and other non-porous surfaces, https://www.iso.org/standard/54431.html, 2011, Erişim Tarihi Aralık 15, 2019
  • Biodeterioration Research Group (IBRG draft P00/009.1(A Method for Evaluating the Resistance of Water-based Paints to Bacterial Growth in the Wet-State. - Draft (9)http://www.ibrg.org, Kasım 2000, Erişim Tarihi Aralık, 2019.
  • Ruiz- Calderon, J.F., Cavallin, H., Song, S.J., Novoselac, A., Pericchi, L.R., Hernandez, J.N., Rios, R., Branch, O.H., Pereira, H., Paulino, L.C., Blaser, M.J., Knight, R., Dominguez-Bello, M.G., Walls talk: Microbial biogeography of homes spanning urbanization, Sci. Adv., 2: e1501061, 2016.
  • Meadow, J. F., Altrichter, A.E., Kembel, S.W., Moriyama, M., O’connor, T.K., Womack, A.M., Brown, G.Z., Green, J.L, Bohannan, B.J.M., Bacterial communities on classroom surfaces vary with human contact, Microbiome, 2,7, 2014.
  • Bellotti, N., Deya, C., Natural Products Applied to Antimicrobial Coatings, Studies in Natural Products Chemistry,60, 485-508, 2018.
  • Sapra, K., Sapra, A., Argyria: The Blue Skin Rare Disease, Asian Pac. J. Health Sci., 1(3): 193-196, 2014.
  • Karlsson, H.L., Gustafsson, J., Cronholm, P., Möller, L., Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size, Toxicology Letters, 188, 112–118, 2009.
  • Lai, J.C.K., Lai, M.B., Jandhyam, S., Dukhande, V.V., Bhushan, A., Daniels, C.K., Leung, S.W., Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts, International Journal of Nanomedicine, 3(4) 533–545, 2008.
  • Singh, S., Zinc Oxide Nanoparticles Impacts: Cytotoxicity, Genotoxicity, Developmental toxicity, and Neurotoxicity, Toxicology Mechanisms and Methods, 2018.
  • EPA 739-R-07-007 https://nepis.epa.gov/Exe/ZyNET.exe/P1006LYJ.txt?ZyActionD=ZyDocument&Client=EPA&Index=2006%20Thru%202010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C06THRU10%5CTXT%5C00000015%5CP1006LYJ.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=19&slide, 2007, Erişim Tarihi Aralık, 2019.
  • Şanlı, N.Ö., Menceloğlu, Y.Z., Bal, S., The Effectiveness of the Antimic® Biocide against Nosocomial Bacteria Specified by Different Standard Methods, Eur J Biol ,76(2): 51-6, 2017.
  • Bal, S., Şanlı, N.Ö., Menceloğlu, Y.Z., Alternative Pathogen Control Chemistry of Glass Fiber-Reinforced Polyester Panels for Cooling Towers, Journal of Materials Engineering and Performance, 2019.
  • Alıcılar, A., Ökenek, F., Kayran, B., Tutak, M., Bor Katkılı Stı̇ren Akrı̇lı̇k Boyaların Alev Gecı̇ktı̇rme, Duman Bastırma Ve Antı̇bakterı̇yel Etkı̇nlı̇klerı̇, Journal of the Faculty of Engineering and Architecture of Gazi University, 30(4), 2015.
  • Hochmannova, L., Vytrasova, J., Photocatalytic and antimicrobial effects of interior paints, Progress in Organic Coatings, 67, 1–5, 2010.
Year 2020, Volume: 35 Issue: 4, 1913 - 1922, 21.07.2020
https://doi.org/10.17341/gazimmfd.678683

Abstract

Project Number

FKD-2017-23569 - BEK-2016-23307; 117M565

References

  • Hoque, J., Akkapeddi, P., Yadav, V., Manjunath, G.B., Divakara S. S. M. Uppu, Konai,M, M., Yarlagadda,V., Sanyal, K., Haldar, J., Broad Spectrum Antibacterial and Antifungal Polymeric Paint Materials: Synthesis, Structure−Activity Relationship, and Membrane-Active Mode of Action, ACS Appl. Mater. Interfaces, 7, 1804−1815, 2014.
  • Kocer, H.B., Cerkez, I., Worley, S. D., Broughton R. M., Huang, T.S., N-Halamine Copolymers for Use in Antimicrobial Paints, ACS Appl. Mater. Interfaces, 3, 3189–3194, 2011.
  • Verdier, T., Coutand, M., Bertron, A., Roques,C., A review of indoor microbial growth across building materials and sampling and analysis methods, Building and Environment, 80, 136- 149, 2014.
  • Elumalia, P., Elumalia, E.K., David, E., Fungi Associated with Deteriorations of Painted Wall Surfaces: Isolation and Identification, Europen Journals of Academic Essays, 1(3), 48-50, 2014.
  • Hwang, G.B., Patir, A., Allan, E., Nair, S., Parkin, I.P., Superhydrophobic and White Light-Activated Bactericidal Surface through a Simple Coating, ACS Appl. Mater. Interfaces, 1-28, 2017.
  • Kelley, S.T., Gilbert, J.A., Studying the microbiology of the indoor environment, Genome Biology,14(202), 2013.
  • Chase, J., Fouquier, J., Zare, M., Sonderegger, D.L., Knight, R., Kelley, S.T., Siegel, J., Caporaso, J.G., Geography and Location Are the Primary Drivers of Office Microbiome Composition, mSystems,1(2), 2016.
  • Maamar, S.B., Hu, J., Hartmann, E.M., Implications of indoor microbial ecology and evolution on antibiotic resistance, Journal of Exposure Science & Environmental Epidemiology, 2019.
  • Mukherjee, K., Rivera, J.J., Klibanov, A.M., Practical Aspects of Hydrophobic Polycationic Bactericidal “Paints”, Appl Biochem Biotechnol, 151, 61–70, 2008.
  • Krishnamoorth, K., Premanathan, M., Veerapandian, M., Kim, S.J., Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria, Nanotechnology, 25, 315101 (10pp), 2014.
  • Menceloğlu, Y. Z., Acatay, K., Simsek, E. ve Taralp, A., Preparation of substantially quaternized ammonium organosilane composition and selfstabilizing aqueous solution thereof, PCT/IB2010/051747, 2011.
  • ISO 22196:2011, Measurement of antibacterial activity on plastics and other non-porous surfaces, https://www.iso.org/standard/54431.html, 2011, Erişim Tarihi Aralık 15, 2019
  • Biodeterioration Research Group (IBRG draft P00/009.1(A Method for Evaluating the Resistance of Water-based Paints to Bacterial Growth in the Wet-State. - Draft (9)http://www.ibrg.org, Kasım 2000, Erişim Tarihi Aralık, 2019.
  • Ruiz- Calderon, J.F., Cavallin, H., Song, S.J., Novoselac, A., Pericchi, L.R., Hernandez, J.N., Rios, R., Branch, O.H., Pereira, H., Paulino, L.C., Blaser, M.J., Knight, R., Dominguez-Bello, M.G., Walls talk: Microbial biogeography of homes spanning urbanization, Sci. Adv., 2: e1501061, 2016.
  • Meadow, J. F., Altrichter, A.E., Kembel, S.W., Moriyama, M., O’connor, T.K., Womack, A.M., Brown, G.Z., Green, J.L, Bohannan, B.J.M., Bacterial communities on classroom surfaces vary with human contact, Microbiome, 2,7, 2014.
  • Bellotti, N., Deya, C., Natural Products Applied to Antimicrobial Coatings, Studies in Natural Products Chemistry,60, 485-508, 2018.
  • Sapra, K., Sapra, A., Argyria: The Blue Skin Rare Disease, Asian Pac. J. Health Sci., 1(3): 193-196, 2014.
  • Karlsson, H.L., Gustafsson, J., Cronholm, P., Möller, L., Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size, Toxicology Letters, 188, 112–118, 2009.
  • Lai, J.C.K., Lai, M.B., Jandhyam, S., Dukhande, V.V., Bhushan, A., Daniels, C.K., Leung, S.W., Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts, International Journal of Nanomedicine, 3(4) 533–545, 2008.
  • Singh, S., Zinc Oxide Nanoparticles Impacts: Cytotoxicity, Genotoxicity, Developmental toxicity, and Neurotoxicity, Toxicology Mechanisms and Methods, 2018.
  • EPA 739-R-07-007 https://nepis.epa.gov/Exe/ZyNET.exe/P1006LYJ.txt?ZyActionD=ZyDocument&Client=EPA&Index=2006%20Thru%202010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C06THRU10%5CTXT%5C00000015%5CP1006LYJ.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=19&slide, 2007, Erişim Tarihi Aralık, 2019.
  • Şanlı, N.Ö., Menceloğlu, Y.Z., Bal, S., The Effectiveness of the Antimic® Biocide against Nosocomial Bacteria Specified by Different Standard Methods, Eur J Biol ,76(2): 51-6, 2017.
  • Bal, S., Şanlı, N.Ö., Menceloğlu, Y.Z., Alternative Pathogen Control Chemistry of Glass Fiber-Reinforced Polyester Panels for Cooling Towers, Journal of Materials Engineering and Performance, 2019.
  • Alıcılar, A., Ökenek, F., Kayran, B., Tutak, M., Bor Katkılı Stı̇ren Akrı̇lı̇k Boyaların Alev Gecı̇ktı̇rme, Duman Bastırma Ve Antı̇bakterı̇yel Etkı̇nlı̇klerı̇, Journal of the Faculty of Engineering and Architecture of Gazi University, 30(4), 2015.
  • Hochmannova, L., Vytrasova, J., Photocatalytic and antimicrobial effects of interior paints, Progress in Organic Coatings, 67, 1–5, 2010.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Seval Bal 0000-0003-2055-3414

Nazmiye Özlem Şanlı 0000-0001-8969-5125

Project Number FKD-2017-23569 - BEK-2016-23307; 117M565
Publication Date July 21, 2020
Submission Date January 22, 2020
Acceptance Date May 2, 2020
Published in Issue Year 2020 Volume: 35 Issue: 4

Cite

APA Bal, S., & Şanlı, N. Ö. (2020). İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 1913-1922. https://doi.org/10.17341/gazimmfd.678683
AMA Bal S, Şanlı NÖ. İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi. GUMMFD. July 2020;35(4):1913-1922. doi:10.17341/gazimmfd.678683
Chicago Bal, Seval, and Nazmiye Özlem Şanlı. “İç Mekan Hijyen koşullarının arttırılmasında Antibakteriyel Duvar boyasının etkinliğinin değerlendirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 4 (July 2020): 1913-22. https://doi.org/10.17341/gazimmfd.678683.
EndNote Bal S, Şanlı NÖ (July 1, 2020) İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 1913–1922.
IEEE S. Bal and N. Ö. Şanlı, “İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi”, GUMMFD, vol. 35, no. 4, pp. 1913–1922, 2020, doi: 10.17341/gazimmfd.678683.
ISNAD Bal, Seval - Şanlı, Nazmiye Özlem. “İç Mekan Hijyen koşullarının arttırılmasında Antibakteriyel Duvar boyasının etkinliğinin değerlendirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (July 2020), 1913-1922. https://doi.org/10.17341/gazimmfd.678683.
JAMA Bal S, Şanlı NÖ. İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi. GUMMFD. 2020;35:1913–1922.
MLA Bal, Seval and Nazmiye Özlem Şanlı. “İç Mekan Hijyen koşullarının arttırılmasında Antibakteriyel Duvar boyasının etkinliğinin değerlendirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 4, 2020, pp. 1913-22, doi:10.17341/gazimmfd.678683.
Vancouver Bal S, Şanlı NÖ. İç mekan hijyen koşullarının arttırılmasında antibakteriyel duvar boyasının etkinliğinin değerlendirilmesi. GUMMFD. 2020;35(4):1913-22.