Research Article
BibTex RIS Cite
Year 2021, Volume: 36 Issue: 1, 275 - 290, 01.12.2020
https://doi.org/10.17341/gazimmfd.553847

Abstract

References

  • Suzuki Y., Maruyama T., Removal of emulsified oil from water by coagulation and foam separation, Sep. Sci. Technol., 40 (16), 3407–3418, 2005.
  • Kajitvichyanukul P., Hung Y.T., Wang L.K., Membrane Technologies for Oil–Water Separation, Membrane and Desalination Technologies, Cilt 13, Editörler: Wang L.K., Chen J.P., Hung Y.T., Shammas N.K., Humana Press, Totowa, NJ, 639–668, 2011.
  • Bayhan Y.K., Değermenci G.D., Investigation ff kinetic and removal of organic matter from cosmetic wastewaters by fenton process, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 181-188, 2017.
  • Tezcan Un U., Koparal A.S., Bakir Ogutveren U., Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes, J. Environ. Manage., 90 (1), 428–433, 2009.
  • Chipasa K.B., Limits of physicochemical treatment of wastewater in the vegetable oil refining industry, Polish Journal of Environmental Studies, 10 (3), 141-147, 2001.
  • Azbar N., Yonar T., Comparative evaluation of a laboratory and full-scale treatment alternatives for the vegetable oil refining industry wastewater (VORW), Process Biochem., 39 (7), 869–875, 2004.
  • An C., Huang G., Yao Y., Zhao S., Emerging usage of electrocoagulation technology for oil removal from wastewater: A review, Sci. Total Environ., 579, 537–556, 2017.
  • Murathan A., Koçyiğit H., Removal of cadmium ions from aqueous solutions in fixed beds by using horse chestnut and oak valonia, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (2), 303-306, 2013.
  • Fox C.H., O’Hara P.D., Bertazzon S., Morgan K., Underwood F.E., Paquet P.C., A preliminary spatial assessment of risk: Marine birds and chronic oil pollution on Canada’s Pacific coast, Sci. Total Environ., 573, 799–809, 2016.
  • Phillips L., Johnson M., Deener K., Bonanni C., EPA’s Exposure Assessment Toolbox (EPA-Expo-Box), Journal of Environmental Informatics, 25 (2), 81-84, 2015.
  • Ergin G., Önel S., Determination and removal of copper ions (Cu2+) in the waste electrolyte in an electrochemical machining application, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (3) 2014.
  • Bari S., Lim T.H., Yu C.W., Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine, Renewable Energy, 27 (3), 339–351, 2002.
  • Onat B., Arioğlu H., Güllüoğlu L., Kurt C., Bakal H., Dünya ve Türkiye’de yağlı tohum ve ham yağ üretimine bir bakış, Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 20, 149–153, 2017.
  • Demirci Y., Pekel L.C., Altınten A., Alpbaz M., Simultaneous control of pH, conductivity and temperature with fuzzy control method in the electrocoagulation reactors, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4) 2016.
  • Açıkgöz Ç., Design of laboratory/pilot-scale membrane bioreactor (mbr) system and manufacture, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 43-50, 2018.
  • Sridhar S., Kale A., Khan A.A., Reverse osmosis of edible vegetable oil industry effluent, J. Membr. Sci., 205 (1), 83–90, 2002.
  • Bilen M., Ateş Ç., Bayraktar B., Determination of optimal conditions in boron factory wastewater chemical treatment process via response surface methodolgy, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 267-278, 2018.
  • Rimeh D., Patrick D., Jean F.B., Guy M., Hybrid process combining electrocoagulation and electro-oxidation processes for the treatment of restaurant wastewaters, J. Environ. Eng., 138 (11), 1146–1156, 2012.
  • Radoiu M.T., Martin D.I., Calinescu I., Iovu H., Preparation of polyelectrolytes for wastewater treatment, J. Hazard. Mater., 106 (1), 27–37, 2004.
  • Özyonar F., Karagözoğlu B., Removal of turbidity from drinking water by electrocoagulation and chemical coagulation, Journal of the Faculty of Engineering and Architecture of Gazi University, 27 (1), 81-89, 2012.
  • Jamaly S., Giwa A., Hasan S.W., Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities, J. Environ. Sci., 37, 15-30, 2015.
  • Phalakornkule C., Mangmeemak J., Intrachod K., Nuntakumjorn B., Pretreatment of palm oil mill effluent by electrocoagulation and coagulation., ScienceAsia, 36 (2), 142–149, 2010.
  • Tezcan Ün Ü., Uǧur S., Koparal A.S., Bakir Öǧütveren Ü., Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol., 52 (1), 136–141, 2006.
  • Sirés I., Brillas E., Oturan M.A., Rodrigo M.A., Panizza M., Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (14), 8336–8367, 2014.
  • Plakas K.V., Sklari S.D., Yiankakis D.A., Sideropoulos G.T., Zaspalis V.T., Karabelas A.J., Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: Pilot-scale studies, Water Res., 91, 183–194, 2016.
  • Nidheesh P.V, Gandhimathi R., Trends in electro-Fenton process for water and wastewater treatment: An overview, Desalination, 299, 1–15, 2012.
  • Sun M., Chen F., Qu J., Liu H., Liu R., Optimization and control of Electro-Fenton process by pH inflection points: A case of treating acrylic fiber manufacturing wastewater, Chem. Eng. J., 269, 399–407, 2015.
  • Lee C.S., Robinson J., Chong M.F., A review on application of flocculants in wastewater treatment, Process Safety and Environmental Protection, 92 (6), 489–508, 2014.
  • Harif T., Khai M., Adin A., Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (10), 3177–3188, 2012.
  • Camcıoğlu Ş., Özyurt B., Zeybek Z., Hapoğlu H., Experimental application of one step ahead advanced pH control to water-based paint wastewater treatment, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 655-664, 2016.
  • Ahmad A.L., Ismail S., Bhatia S., Optimization of coagulation−flocculation process for palm oil mill effluent using response surface methodology, Environ. Sci. Technol., 39 (8), 2828–2834, 2005.
  • Pignatello J.J., Oliveros E., MacKay A., Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Critical Reviews in Environmental Science and Technology, 36 (1), 1–84, 2006.
  • Nidheesh P.V., Gandhimathi R., Removal of Rhodamine B from aqueous solution using graphite-graphite electro-Fenton system, Desalin. Water Treat., 52 (10–12), 1872–1877, 2014.
  • Wang C.T., Hu J.L., Chou W.L., Kuo Y.M., Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode, J. Hazard. Mater., 152 (2), 601–606, 2008.
  • Panizza M., Oturan M.A., Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode, Electrochim. Acta, 56 (20), 7084–7087, 2011.
  • Atmaca E., Treatment of landfill leachate by using electro-Fenton method, J. Hazard. Mater., 163 (1), 109–114, 2009.
  • Palas B., Ersöz G., Atalay S., Investigation of the kinetics of the micropollutant removal by using environmentallyfriendly wastewater treatment methods: Fenton like oxidation of Methylene Blue in the presence of LaFeO3 perovskite type of catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4) 1181-1191,2017.
  • Brillas E., Sauleda R., Casado J., Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc., 145 (3), 759–765, 1998.
  • Moreira F.C., Boaventura R.A.R., Brillas E., Vilar V.J.P., Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal., B, 202, 217–261, 2017.
  • Gökkuş Ö., Çiner F., Investigation of color and cod removal from wastewater containing Disperse Yellow 119 and Disperse Red 167 using fenton oxidation process, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (1), 49-55, 2010.
  • Özyurt B., Camcıoğlu Ş., Hapoglu H., A consecutive electrocoagulation and electro-oxidation treatment for pulp and paper mill wastewater, Desalin. Water Treat., 93, 214–228, 2017.
  • Dovletoglou O., Philippopoulos C., Grigoropoulou H., Coagulation for treatment of paint industry wastewater, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 37 (7), 1361–1377, 2002.
  • Bhatia S., Othman Z., Ahmad A.L., Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant, J. Hazard. Mater., 145 (1–2), 120–126, 2007.
  • Birjandi N., Younesi H., Bahramifar N., Ghafari S., Zinatizadeh A.A., Sethupathi S., Optimization of coagulation-flocculation treatment on paper-recycling wastewater: Application of response surface methodology, , J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (12), 1573–1582, 2013.
  • Freitas T.K.F.S., Oliveira V.M., de Souza M.T.F., Geraldino H.C.L., Almeida V.C., Fávaro S.L., Garcia J.C., Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant, Ind. Crops Prod., 76, 538–544, 2015.
  • Irfan M., Butt T., Imtiaz N., Abbas N., Khan R.A., Shafique A., The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate, Arabian J. Chem., 10, S2307–S2318, 2017.
  • Bakaraki Turan N., Sari Erkan H., Onkal Engin G., The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters, Process Safety and Environmental Protection, 109, 203–213, 2017.
  • Jaafarzadeh N., Ghanbari F., Ahmadi M., Omidinasab M., Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: Permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate, Chem. Eng. J., 308, 142–150, 2017.
  • Babuponnusami A., Muthukumar K., Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J., 183, 1–9, 2012.
  • Gümüş D., Akbal F., Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Safety and Environmental Protection, 103, 252–258, 2016.
  • Mousavi S.A., Nazari S., Applying response surface methodology to optimize the Fenton oxidation process in the removal of reactive red 2, Polish Journal of Environmental Studies, 26 (2), 765–772, 2017.
  • Can O.T., COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desalin. Water Treat. , 52 (1–3), 65–73, 2014.
  • Nidheesh P.V, Gandhimathi R., Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics, RSC Adv., 4 (53), 27946–27954, 2014.
  • Neyens E., Baeyens J., A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (1–3), 33–50, 2003.
  • Wang S., A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (3), 714–720, 2008.
  • Thirugnanasambandham K., Kandasamy S., Sivakumar V., Kumar R.K., Mohanavelu R., Modeling of by-product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater, J. Taiwan Inst. Chem. Eng., 46, 89–97, 2015.
  • Hermosilla D., Cortijo M., Huang C.P., Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ., 407 (11), 3473–3481, 2009.
  • Moussavi G., Aghanejad M., The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant, Sep. Purif. Technol., 132, 182–186, 2014.
  • Thirugnanasambandham K., Sivakumar V., Modeling and optimization of advanced oxidation treatment of beer industry wastewater using Electro-Fenton process, Environmental Progress and Sustainable Energy, 34 (4), 1072–1079, 2015.
  • Shen Y., Xu Q., Gao D., Shi H., Degradation of an anthraquinone dye by ozone/Fenton: Response surface approach and degradation pathway, Ozone: Science and Engineering, 39 (4), 219–232, 2017.
  • Davarnejad R., Nikseresht M., Ajideh I., An efficient technique for dairy wastewater treatment, Int. J. Dairy Technol., 71 (2), 532–538, 2018.
  • Kurt U., Apaydin O., Gonullu M.T., Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process, J. Hazard. Mater., 143 (1–2), 33–40, 2007.

Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması

Year 2021, Volume: 36 Issue: 1, 275 - 290, 01.12.2020
https://doi.org/10.17341/gazimmfd.553847

Abstract

Bitkisel yağların üretimi sırasında oluşan yüksek miktarda organik
kirlilik içeren endüstriyel atık sular, alıcı ortamlara deşarj edilmeden önce arıtılmalıdır.
Yapılan çalışmada koagülasyon-flokülasyon ve elektro-Fenton yöntemleri ve iki
yöntemin ardışık işletimi ile ayçiçek yağı endüstrisi atık suyunun arıtımı
gerçekleştirilmiştir. Koagülasyon-flokülasyon yöntemiyle arıtımda en uygun
koagülant türü ve derişimi, flokülant derişimi ve pH’ın belirlenmesi amacıyla PACl
ve Al2(SO4)3.18H2O koagülantları kullanılarak
4, 10, 16 g/L değerlerinde, flokülant olarak anyonik ticari polielektrolit
kullanılarak 0,06, 0,18 ve 0,3 g/L değerlerinde ve pH 4, 6, 8 koşullarında
çalışmalar gerçekleştirilmiştir. Elde edilen en uygun değerlerde (10 g/L Al2(SO4)3.18H2O,
0,06 g/L flokülant, pH 6) yapılan çalışmada %96,57 kimyasal oksijen ihtiyacı
(KOİ) giderimine ulaşılmıştır. Elektro-Fenton yöntemi ile yapılan arıtım
çalışmalarında 1, 2,5, 4 A akım şiddeti, 4,5, 9, 18 g/L FeSO4.7H2O
derişimi, 32,71, 81,77, 130,84 mM H2O2 derişimi, 3, 5,5,
8 pH değerleri çalışılmış ve en uygun işletim koşulları 1 A akım şiddeti, 9 g/L
FeSO4.7H2O, 130,84 mM H2O2, 6,06 H2O2/Fe2+
mol oranı ve pH 3 olarak belirlenmiştir. Bu koşullarda yapılan çalışmada
%98,50 KOİ giderimi ve 0,2231 kWh/kg KOİg enerji tüketimi elde
edilmiştir. Belirlenen en uygun işletim koşullarında ardışık koagülasyon-flokülasyon-elektro-Fenton
yöntemi ile yapılan arıtımda ise 15 min sonunda %98,42 KOİ giderimi ve 2,15 kWh/kg KOİg enerji
tüketimi değerlerine ulaşılmıştır.

References

  • Suzuki Y., Maruyama T., Removal of emulsified oil from water by coagulation and foam separation, Sep. Sci. Technol., 40 (16), 3407–3418, 2005.
  • Kajitvichyanukul P., Hung Y.T., Wang L.K., Membrane Technologies for Oil–Water Separation, Membrane and Desalination Technologies, Cilt 13, Editörler: Wang L.K., Chen J.P., Hung Y.T., Shammas N.K., Humana Press, Totowa, NJ, 639–668, 2011.
  • Bayhan Y.K., Değermenci G.D., Investigation ff kinetic and removal of organic matter from cosmetic wastewaters by fenton process, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 181-188, 2017.
  • Tezcan Un U., Koparal A.S., Bakir Ogutveren U., Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes, J. Environ. Manage., 90 (1), 428–433, 2009.
  • Chipasa K.B., Limits of physicochemical treatment of wastewater in the vegetable oil refining industry, Polish Journal of Environmental Studies, 10 (3), 141-147, 2001.
  • Azbar N., Yonar T., Comparative evaluation of a laboratory and full-scale treatment alternatives for the vegetable oil refining industry wastewater (VORW), Process Biochem., 39 (7), 869–875, 2004.
  • An C., Huang G., Yao Y., Zhao S., Emerging usage of electrocoagulation technology for oil removal from wastewater: A review, Sci. Total Environ., 579, 537–556, 2017.
  • Murathan A., Koçyiğit H., Removal of cadmium ions from aqueous solutions in fixed beds by using horse chestnut and oak valonia, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (2), 303-306, 2013.
  • Fox C.H., O’Hara P.D., Bertazzon S., Morgan K., Underwood F.E., Paquet P.C., A preliminary spatial assessment of risk: Marine birds and chronic oil pollution on Canada’s Pacific coast, Sci. Total Environ., 573, 799–809, 2016.
  • Phillips L., Johnson M., Deener K., Bonanni C., EPA’s Exposure Assessment Toolbox (EPA-Expo-Box), Journal of Environmental Informatics, 25 (2), 81-84, 2015.
  • Ergin G., Önel S., Determination and removal of copper ions (Cu2+) in the waste electrolyte in an electrochemical machining application, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (3) 2014.
  • Bari S., Lim T.H., Yu C.W., Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine, Renewable Energy, 27 (3), 339–351, 2002.
  • Onat B., Arioğlu H., Güllüoğlu L., Kurt C., Bakal H., Dünya ve Türkiye’de yağlı tohum ve ham yağ üretimine bir bakış, Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 20, 149–153, 2017.
  • Demirci Y., Pekel L.C., Altınten A., Alpbaz M., Simultaneous control of pH, conductivity and temperature with fuzzy control method in the electrocoagulation reactors, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4) 2016.
  • Açıkgöz Ç., Design of laboratory/pilot-scale membrane bioreactor (mbr) system and manufacture, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 43-50, 2018.
  • Sridhar S., Kale A., Khan A.A., Reverse osmosis of edible vegetable oil industry effluent, J. Membr. Sci., 205 (1), 83–90, 2002.
  • Bilen M., Ateş Ç., Bayraktar B., Determination of optimal conditions in boron factory wastewater chemical treatment process via response surface methodolgy, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 267-278, 2018.
  • Rimeh D., Patrick D., Jean F.B., Guy M., Hybrid process combining electrocoagulation and electro-oxidation processes for the treatment of restaurant wastewaters, J. Environ. Eng., 138 (11), 1146–1156, 2012.
  • Radoiu M.T., Martin D.I., Calinescu I., Iovu H., Preparation of polyelectrolytes for wastewater treatment, J. Hazard. Mater., 106 (1), 27–37, 2004.
  • Özyonar F., Karagözoğlu B., Removal of turbidity from drinking water by electrocoagulation and chemical coagulation, Journal of the Faculty of Engineering and Architecture of Gazi University, 27 (1), 81-89, 2012.
  • Jamaly S., Giwa A., Hasan S.W., Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities, J. Environ. Sci., 37, 15-30, 2015.
  • Phalakornkule C., Mangmeemak J., Intrachod K., Nuntakumjorn B., Pretreatment of palm oil mill effluent by electrocoagulation and coagulation., ScienceAsia, 36 (2), 142–149, 2010.
  • Tezcan Ün Ü., Uǧur S., Koparal A.S., Bakir Öǧütveren Ü., Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol., 52 (1), 136–141, 2006.
  • Sirés I., Brillas E., Oturan M.A., Rodrigo M.A., Panizza M., Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (14), 8336–8367, 2014.
  • Plakas K.V., Sklari S.D., Yiankakis D.A., Sideropoulos G.T., Zaspalis V.T., Karabelas A.J., Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: Pilot-scale studies, Water Res., 91, 183–194, 2016.
  • Nidheesh P.V, Gandhimathi R., Trends in electro-Fenton process for water and wastewater treatment: An overview, Desalination, 299, 1–15, 2012.
  • Sun M., Chen F., Qu J., Liu H., Liu R., Optimization and control of Electro-Fenton process by pH inflection points: A case of treating acrylic fiber manufacturing wastewater, Chem. Eng. J., 269, 399–407, 2015.
  • Lee C.S., Robinson J., Chong M.F., A review on application of flocculants in wastewater treatment, Process Safety and Environmental Protection, 92 (6), 489–508, 2014.
  • Harif T., Khai M., Adin A., Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (10), 3177–3188, 2012.
  • Camcıoğlu Ş., Özyurt B., Zeybek Z., Hapoğlu H., Experimental application of one step ahead advanced pH control to water-based paint wastewater treatment, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 655-664, 2016.
  • Ahmad A.L., Ismail S., Bhatia S., Optimization of coagulation−flocculation process for palm oil mill effluent using response surface methodology, Environ. Sci. Technol., 39 (8), 2828–2834, 2005.
  • Pignatello J.J., Oliveros E., MacKay A., Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Critical Reviews in Environmental Science and Technology, 36 (1), 1–84, 2006.
  • Nidheesh P.V., Gandhimathi R., Removal of Rhodamine B from aqueous solution using graphite-graphite electro-Fenton system, Desalin. Water Treat., 52 (10–12), 1872–1877, 2014.
  • Wang C.T., Hu J.L., Chou W.L., Kuo Y.M., Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode, J. Hazard. Mater., 152 (2), 601–606, 2008.
  • Panizza M., Oturan M.A., Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode, Electrochim. Acta, 56 (20), 7084–7087, 2011.
  • Atmaca E., Treatment of landfill leachate by using electro-Fenton method, J. Hazard. Mater., 163 (1), 109–114, 2009.
  • Palas B., Ersöz G., Atalay S., Investigation of the kinetics of the micropollutant removal by using environmentallyfriendly wastewater treatment methods: Fenton like oxidation of Methylene Blue in the presence of LaFeO3 perovskite type of catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4) 1181-1191,2017.
  • Brillas E., Sauleda R., Casado J., Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc., 145 (3), 759–765, 1998.
  • Moreira F.C., Boaventura R.A.R., Brillas E., Vilar V.J.P., Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal., B, 202, 217–261, 2017.
  • Gökkuş Ö., Çiner F., Investigation of color and cod removal from wastewater containing Disperse Yellow 119 and Disperse Red 167 using fenton oxidation process, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (1), 49-55, 2010.
  • Özyurt B., Camcıoğlu Ş., Hapoglu H., A consecutive electrocoagulation and electro-oxidation treatment for pulp and paper mill wastewater, Desalin. Water Treat., 93, 214–228, 2017.
  • Dovletoglou O., Philippopoulos C., Grigoropoulou H., Coagulation for treatment of paint industry wastewater, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 37 (7), 1361–1377, 2002.
  • Bhatia S., Othman Z., Ahmad A.L., Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant, J. Hazard. Mater., 145 (1–2), 120–126, 2007.
  • Birjandi N., Younesi H., Bahramifar N., Ghafari S., Zinatizadeh A.A., Sethupathi S., Optimization of coagulation-flocculation treatment on paper-recycling wastewater: Application of response surface methodology, , J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (12), 1573–1582, 2013.
  • Freitas T.K.F.S., Oliveira V.M., de Souza M.T.F., Geraldino H.C.L., Almeida V.C., Fávaro S.L., Garcia J.C., Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant, Ind. Crops Prod., 76, 538–544, 2015.
  • Irfan M., Butt T., Imtiaz N., Abbas N., Khan R.A., Shafique A., The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate, Arabian J. Chem., 10, S2307–S2318, 2017.
  • Bakaraki Turan N., Sari Erkan H., Onkal Engin G., The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters, Process Safety and Environmental Protection, 109, 203–213, 2017.
  • Jaafarzadeh N., Ghanbari F., Ahmadi M., Omidinasab M., Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: Permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate, Chem. Eng. J., 308, 142–150, 2017.
  • Babuponnusami A., Muthukumar K., Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J., 183, 1–9, 2012.
  • Gümüş D., Akbal F., Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Safety and Environmental Protection, 103, 252–258, 2016.
  • Mousavi S.A., Nazari S., Applying response surface methodology to optimize the Fenton oxidation process in the removal of reactive red 2, Polish Journal of Environmental Studies, 26 (2), 765–772, 2017.
  • Can O.T., COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desalin. Water Treat. , 52 (1–3), 65–73, 2014.
  • Nidheesh P.V, Gandhimathi R., Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics, RSC Adv., 4 (53), 27946–27954, 2014.
  • Neyens E., Baeyens J., A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (1–3), 33–50, 2003.
  • Wang S., A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (3), 714–720, 2008.
  • Thirugnanasambandham K., Kandasamy S., Sivakumar V., Kumar R.K., Mohanavelu R., Modeling of by-product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater, J. Taiwan Inst. Chem. Eng., 46, 89–97, 2015.
  • Hermosilla D., Cortijo M., Huang C.P., Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ., 407 (11), 3473–3481, 2009.
  • Moussavi G., Aghanejad M., The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant, Sep. Purif. Technol., 132, 182–186, 2014.
  • Thirugnanasambandham K., Sivakumar V., Modeling and optimization of advanced oxidation treatment of beer industry wastewater using Electro-Fenton process, Environmental Progress and Sustainable Energy, 34 (4), 1072–1079, 2015.
  • Shen Y., Xu Q., Gao D., Shi H., Degradation of an anthraquinone dye by ozone/Fenton: Response surface approach and degradation pathway, Ozone: Science and Engineering, 39 (4), 219–232, 2017.
  • Davarnejad R., Nikseresht M., Ajideh I., An efficient technique for dairy wastewater treatment, Int. J. Dairy Technol., 71 (2), 532–538, 2018.
  • Kurt U., Apaydin O., Gonullu M.T., Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process, J. Hazard. Mater., 143 (1–2), 33–40, 2007.
There are 62 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Baran Özyurt This is me 0000-0003-0011-8351

Şule Camcıoğlu 0000-0002-8983-3193

Toprak Karatokuş This is me 0000-0001-9818-153X

Ceren Yüksek This is me 0000-0003-3282-1391

Hale Hapoğlu 0000-0003-0464-9483

Publication Date December 1, 2020
Submission Date April 15, 2019
Acceptance Date August 20, 2020
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Özyurt, B., Camcıoğlu, Ş., Karatokuş, T., Yüksek, C., et al. (2020). Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 275-290. https://doi.org/10.17341/gazimmfd.553847
AMA Özyurt B, Camcıoğlu Ş, Karatokuş T, Yüksek C, Hapoğlu H. Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. GUMMFD. December 2020;36(1):275-290. doi:10.17341/gazimmfd.553847
Chicago Özyurt, Baran, Şule Camcıoğlu, Toprak Karatokuş, Ceren Yüksek, and Hale Hapoğlu. “Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon Ve Elektro-Fenton yöntemleriyle arıtılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no. 1 (December 2020): 275-90. https://doi.org/10.17341/gazimmfd.553847.
EndNote Özyurt B, Camcıoğlu Ş, Karatokuş T, Yüksek C, Hapoğlu H (December 1, 2020) Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 275–290.
IEEE B. Özyurt, Ş. Camcıoğlu, T. Karatokuş, C. Yüksek, and H. Hapoğlu, “Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması”, GUMMFD, vol. 36, no. 1, pp. 275–290, 2020, doi: 10.17341/gazimmfd.553847.
ISNAD Özyurt, Baran et al. “Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon Ve Elektro-Fenton yöntemleriyle arıtılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (December 2020), 275-290. https://doi.org/10.17341/gazimmfd.553847.
JAMA Özyurt B, Camcıoğlu Ş, Karatokuş T, Yüksek C, Hapoğlu H. Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. GUMMFD. 2020;36:275–290.
MLA Özyurt, Baran et al. “Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon Ve Elektro-Fenton yöntemleriyle arıtılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 1, 2020, pp. 275-90, doi:10.17341/gazimmfd.553847.
Vancouver Özyurt B, Camcıoğlu Ş, Karatokuş T, Yüksek C, Hapoğlu H. Ayçiçek yağı endüstrisi atık sularının koagülasyon-flokülasyon ve elektro-Fenton yöntemleriyle arıtılması. GUMMFD. 2020;36(1):275-90.

Cited By