Research Article
BibTex RIS Cite

Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi

Year 2021, Volume: 36 Issue: 3, 1449 - 1466, 24.05.2021
https://doi.org/10.17341/gazimmfd.739556

Abstract

İklim değişikliğinin nehir akımları üzerindeki etkilerinin incelenmesi, havza ölçeğinde su bütçesi açısından önemli bir hidrolojik problem olarak karşımıza çıkmaktadır. Bu çalışma, Fırat-Dicle havzasında akarsu akımlarının (Q) yağış (P), potansiyel evapotranspirasyon (Ep) ve kuraklık indeksindeki değişimlere karşı tepkisini araştırmak amacıyla gerçekleştirilmiştir. Havza içerisinde seçilen 31 adet alt havzaya ait yıllık ortalama yağış, akış, Ep ve sıcaklık verilerinin uzun süreli zamansal eğilimleri Mann-Kendall trend testi ile incelendikten sonra yıllık ortalama akımların yağış, Ep ve kuraklık indeksine olan hassasiyeti Schaake [1] tarafından önerilen iklim elastikiyeti metodu ile değerlendirilmiştir. Elde edilen sonuçlara göre, akışın yağış ve Ep hassasiyeti katsayılarının (sırasıyla εP ve εEp ) havza genelinde ortalama değerleri sırasıyla 1,42 ve -0,42 olarak hesaplanmıştır. Buna göre; havza genelinde yağışta meydana gelecek %10’luk bir artışın (azalışın) akışta ortalama %14,2’lik bir artışa (azalışa), diğer taraftan Ep‘deki %10’luk bir artışın (azalışın) ise akışta ortalama %4,2’lik bir azalışa (artışa) neden olacağı anlaşılmaktadır. Burada εP‘nin ortalama değerinin ǀεEpǀ’nin ortalama değerinden daha büyük olması, Fırat-Dicle havzasında akışın P’ye olan hassasiyetinin Ep’ye göre daha fazla olduğunu göstermektedir. Diğer taraftan, akışın kuraklık indeksi hassasiyet katsayısının (εØ) havza genelinde ortalama değeri -0,46 olarak hesaplanmış olup bu değer kuraklık indeksinde %10’luk bir artışın akışta ortalama %4,6’lik bir azalışa neden olacağını ifade etmektedir. Bunlara ilave olarak, alt havzalara ait akışın iklimsel değişim hassasiyeti katsayıları (εP, ǀεEpǀ ve ǀεØǀ) ile akış katsayısı (Q/P) arasında doğrusal olmayan ters bir bağıntı olduğu ve dolayısıyla havza akışındaki azalma ile akışın iklimsel değişkenliğe olan hassasiyetinin artacağı görülmüştür. Son olarak, havza genelinde yüksek kotlardan alçak kotlara doğru gidildikçe εP, ǀεEpǀ ve ǀεØǀ değerlerinde göreceli bir artış olduğu tespit edilmiş olup havzada alçak kotlarda (özellikle Aşağı Fırat ve Dicle havzasının doğu bölgelerinde) akışın iklim değişimlerine karşı hassasiyetinin nispeten daha fazla olduğu anlaşılmıştır.

References

  • 1. Schaake, J.C., From Climate to Flow, Editor: Waggoner, P.E., Climate Change and U.S. Water Resources, New York, John Wiley and Sons, 177-206, 1990.
  • 2. Legesse, D., Vallet –Coulomb, C., Gasse, F., Hydrological response of a catchment to climate and land use changes in tropical Africa: case study South Central Ethiopia, Journal of Hydrology, 275 (1-2), 67-85, 2003.
  • 3. Yildiz, O., Barros, A.P., Climate Variability and Hydrologic Extremes-Modeling the Water and Energy Budgets in the Monongahela River Basin, Editors: De Jong, C., Colins, D., Ranzi, R., Climate and Hydrology in Mountain Areas, John Wiley and Sons, New York, 303–318, 2005.
  • 4. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., Stouffer, R.J., Stationarity is dead: whither water management, Science, 319 (5863), 573-574, 2008.
  • 5. Immerzeel, W.W., Van Beek, L.P., Bierkens, M.F., Climate change will affect the Asian water towers, Science, 328 (5984), 1382-1385, 2010.
  • 6. Xu, K., Milliman, J.D., Xu, H., Temporal trend of precipitation and runoff in major Chinese rivers since 1951, Global and Planetary Change, 73 (3-4), 219-232, 2010.
  • 7. Hu, S., Liu, C., Zheng, H., Wang, Z., Yu, J., Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake, Jornal of Geographical Sciences, 22 (5), 895-905, 2012.
  • 8. Wang, W., Shao, Q., Yang, T., Peng, S., Xing, W., Sun, F., Luo, Y., Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe River Basin, China, Hydrological Processes, 27 (8), 1158-1174, 2013.
  • 9. Wang, H., He, K., Sensitivity analysis of the effects of climate change on streamflow using climate elasticity in the Luan River Basin, China, Polish Journal of Environmental Studies, 26 (2), 837-845, 2017.
  • 10. Němec, J., Schaake, J., Sensitivity of water resource systems to climate variation, Hydrological Sciences Journal, 27 (3), 327-343, 1982.
  • 11. Kaczmarek, Z., Krasuski, D., Sensitivity of water balance to climate change and variability, IIASA Working Paper WP-91-047, 1991.
  • 12. Fowler, A., Potential climate change impacts on water resources in the Auckland Region (New Zealand), Climate Research, 11, 221–245, 1999.
  • 13. Yildiz, O., Barros, A.P., Elucidating vegetation controls on the hydroclimatology of a mid-latitude basin, Journal of Hydrology, 333, 431–448, 2007.
  • 14. Nan, Y., Bao-hui, M., Chun-kun, L., Impact analysis of climate change on water resources, Procedia Engineering, 24, 643–648, 2011.
  • 15. Zhang, Y., Li, H., Reggiani, P., Climate variability and climate change impacts on land surface, hydrological processes and water management, Water, 11 (7), 1492, 2019.
  • 16. Türkeş, M., Spatial and temporal analysis of annual rainfall variations in Turkey, International Journal of Climatology, 16, 1057-1076, 1996.
  • 17. Kadıoğlu, M., Trends in surface air temperature data over Turkey, International Journal of Climatology, 17, 511-550, 1997.
  • 18. Akyürek, M., Türkiye Yıllık Ortalama Akımlarının Trend Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2003.
  • 19. Kahya, E., Kalaycı, S., Trend analysis of streamflow in Turkey, Journal of Hydrology, 289, 128-144, 2004.
  • 20. Sankarasubramanian A., Vogel, R.M., Limbrunner, J.F., Climate elasticity of streamflow in the United States, Water Resources Research, 37 (6), 1771-1781, 2001.
  • 21. Chiew, F., Estimation of rainfall elasticity of streamflow in Australia, Hydrological Sciences, 51 (4), 613–625, 2006.
  • 22. Fu, G., Charles, S.P., Chiew, F.H.S., A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow, Water Resources Research, 43,W11419, 2007.
  • 23. Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., Fukushima, Y., Responses of streamflow to climate and land surface change in the headwaters of the Yellow River basin, Water Resources Research, 45 (7), 641-655, 2009.
  • 24. Ma, H., Yang, D., Tan, S.K., Gao, B., Hu, Q., Impact of climate variability and human activity on streamflow decrease in the Miyun reservoir catchment, Journal of Hydrology, 389 (3-4), 317-324, 2010.
  • 25. Chang, J., Zhang, H., Wang, Y., Zhu, Y., Assessing the impact of climate variability and human activities on streamflow variation, Hydrology and Earth System Sciences, 20, 1547-1560, 2016.
  • 26. Seymenov, K., Climate Elasticity of Annual Streamflow in Northwest Bulgaria, Editors: Nedkov S., Zhelezov, G., Ilieva, N., Nikolova, M., Koulov, B., Naydenov, K., Dimitrov, S., Smart Geography, Key Challenges in Geography, Springer, 105-115, 2020.
  • 27. GAP GAP Bölgesel Kalkınma İdaresi Başkanlığı (BKİB). GAP’ta son durum. http://www.gap.gov.tr/gap-ta-son-durum-sayfa-32.html. Yayın tarihi 2018. Erişim tarihi Mayıs 6, 2020.
  • 28. Hargreaves, G.H., Samani, Z.A., Reference crop evapotranspiration from temperature, Applied Engineering Agriculture, 1 (2), 96-99, 1985.
  • 29. Smith, M., CLIMWAT for CROPWAT: A climate database for irrigation planning and management, FAO Irrigation and Drainage Paper 49, FAO, Rome, Italy, 1993.
  • 30. Vanderlinden, K., Giraldez, J., Meirvenne, M.V., Assessing reference evapotranspiration by the Hargreaves method in Southern Spain, Journal of Irrigation and Drainage Engineering, 130 (3), 184-191, 2004.
  • 31. Trajkovic, S., Hargreaves versus Penman-Monteith under humid condition, Journal of Irrigation and Drainage Engineering ASCE, 133 (1), 38-42, 2007.
  • 32. Tabari, H., Hosseinzadeh Talaee, P., Local calibration of the Hargreaves and Pristley-Taylor equations for estimating reference evapotranspiration in arid and cold climates in Iran based on the Penman-Monteith model, Journal Hydrologic Engineering, 16 (10), 837-845, 2011.
  • 33. Subburayan, S., Murugappan, A., Mohan, S., Modified Hargreaves equation for estimation of ETo in a hot and humid location in Tamilnadu State, India, International Journal of Engineering Science and Technology (IJEST), 3 (1), 592-600, 2011.
  • 34. Mohawesh, O.E., Talozi, S.A., Comparison of Hargreaves and FAO56 equations for estimating monthly evapotranspiration for semi-arid and arid environments, Archives of Agronomy and Soil Science, 58 (3), 321-334, 2012.
  • 35. Cobaner, M., Citakoglu, H., Haktanir, T., Kisi, O., Modifying Hargreaves-Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey, Hydrology Research, 48 (2), 480-497, 2017.
  • 36. Almorox, J., Quej, V.H., Martí, P., Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes, Journal of Hydrology, 528, 514-522, 2015.
  • 37. Tigkas, D., Vangelis, H., Tsakiris, G., The Drought Indices Calculator (DrinC), 8th International Conference of EWRA, Water Resources Management in an Interdisciplinary and Changing Context, Porto, Portugal, 1333-1342, 26-29 June, 2013.
  • 38. Mann, H.B., Nonparametric tests against trend, Econometrika,13 (3), 245-259, 1945.
  • 39. Kendall, M.G., Rank Correlation Methods, Griffin, Oxford, England, 1948.
  • 40. Hamed, K.H., Trend detection in hydrologic data: the Mann- Kendall trend test under the scaling hypothesis, Journal of Hydrology, 349 (3-4), 350-363, 2008.
  • 41. Sun, S., Chen, H., Ju, W., Song, J., Zhang, H., Sun, J., Fang, Y., Effects of climate change on annual streamflow using climate elasticity in Poyang Lake basin, China, Theoretical and Applied Climatology, 112 (1-2), 169-183, 2013.
  • 42. Hupet, F., Vanclooster, M., Effect of the sampling frequency of meteorological variaables on the estimation of reference evapotranspiration, Journal of Hydrology, 3, 192-204, 2001.
  • 43. Arora, V.K., The use of the aridity index to assess climate change effect on annual runoff, Journal of Hydrology, 265, 164-177, 2002.
  • 44. Gong, L., Xu, C., Chen, D., Halldin, S., Chen Y.D., Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin, Journal of Hydrology, 3, 620-629, 2006.
  • 45. Liu, X., Liu, W., Xia, J., Comparison of the streamflow sensitivity to aridity index between the Danjiangkou reservoir and Miyun reservoir basin, China, Theoretical and Applied Climatology, 111 (3-4), 683-691, 2013.
  • 46. Buydko, M.I., Evaporation Under Natural Conditions, Israel Program for Scientific Translations, Washington, 1963.
  • 47. Turc, L., Le bilan d’eau des Sols: relations entre les precipitations, l’evaporation et l’ecoulemnet, Ann Agron, 5, 491-569, 1953.
  • 48. Pike, J., The estimation of annual runoff from meteorological data in a tropical climate, Journal of Hydrology, 2 (2), 116-123, 1964.
  • 49. Yenigün, K., Gümüş, V., Bulut, H., Trends in steramflow of the Euphrates basin, Turkey, Water Management, 161 (4), 189-198, 2008.
  • 50. Zhang, L., Dawes, W.R., Walker, G.R., Response of mean annual evapotranspiration to vegetation changes at catchment scale, Water Resources Research, 37 (3), 701-708, 2001.
Year 2021, Volume: 36 Issue: 3, 1449 - 1466, 24.05.2021
https://doi.org/10.17341/gazimmfd.739556

Abstract

References

  • 1. Schaake, J.C., From Climate to Flow, Editor: Waggoner, P.E., Climate Change and U.S. Water Resources, New York, John Wiley and Sons, 177-206, 1990.
  • 2. Legesse, D., Vallet –Coulomb, C., Gasse, F., Hydrological response of a catchment to climate and land use changes in tropical Africa: case study South Central Ethiopia, Journal of Hydrology, 275 (1-2), 67-85, 2003.
  • 3. Yildiz, O., Barros, A.P., Climate Variability and Hydrologic Extremes-Modeling the Water and Energy Budgets in the Monongahela River Basin, Editors: De Jong, C., Colins, D., Ranzi, R., Climate and Hydrology in Mountain Areas, John Wiley and Sons, New York, 303–318, 2005.
  • 4. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., Stouffer, R.J., Stationarity is dead: whither water management, Science, 319 (5863), 573-574, 2008.
  • 5. Immerzeel, W.W., Van Beek, L.P., Bierkens, M.F., Climate change will affect the Asian water towers, Science, 328 (5984), 1382-1385, 2010.
  • 6. Xu, K., Milliman, J.D., Xu, H., Temporal trend of precipitation and runoff in major Chinese rivers since 1951, Global and Planetary Change, 73 (3-4), 219-232, 2010.
  • 7. Hu, S., Liu, C., Zheng, H., Wang, Z., Yu, J., Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake, Jornal of Geographical Sciences, 22 (5), 895-905, 2012.
  • 8. Wang, W., Shao, Q., Yang, T., Peng, S., Xing, W., Sun, F., Luo, Y., Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe River Basin, China, Hydrological Processes, 27 (8), 1158-1174, 2013.
  • 9. Wang, H., He, K., Sensitivity analysis of the effects of climate change on streamflow using climate elasticity in the Luan River Basin, China, Polish Journal of Environmental Studies, 26 (2), 837-845, 2017.
  • 10. Němec, J., Schaake, J., Sensitivity of water resource systems to climate variation, Hydrological Sciences Journal, 27 (3), 327-343, 1982.
  • 11. Kaczmarek, Z., Krasuski, D., Sensitivity of water balance to climate change and variability, IIASA Working Paper WP-91-047, 1991.
  • 12. Fowler, A., Potential climate change impacts on water resources in the Auckland Region (New Zealand), Climate Research, 11, 221–245, 1999.
  • 13. Yildiz, O., Barros, A.P., Elucidating vegetation controls on the hydroclimatology of a mid-latitude basin, Journal of Hydrology, 333, 431–448, 2007.
  • 14. Nan, Y., Bao-hui, M., Chun-kun, L., Impact analysis of climate change on water resources, Procedia Engineering, 24, 643–648, 2011.
  • 15. Zhang, Y., Li, H., Reggiani, P., Climate variability and climate change impacts on land surface, hydrological processes and water management, Water, 11 (7), 1492, 2019.
  • 16. Türkeş, M., Spatial and temporal analysis of annual rainfall variations in Turkey, International Journal of Climatology, 16, 1057-1076, 1996.
  • 17. Kadıoğlu, M., Trends in surface air temperature data over Turkey, International Journal of Climatology, 17, 511-550, 1997.
  • 18. Akyürek, M., Türkiye Yıllık Ortalama Akımlarının Trend Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2003.
  • 19. Kahya, E., Kalaycı, S., Trend analysis of streamflow in Turkey, Journal of Hydrology, 289, 128-144, 2004.
  • 20. Sankarasubramanian A., Vogel, R.M., Limbrunner, J.F., Climate elasticity of streamflow in the United States, Water Resources Research, 37 (6), 1771-1781, 2001.
  • 21. Chiew, F., Estimation of rainfall elasticity of streamflow in Australia, Hydrological Sciences, 51 (4), 613–625, 2006.
  • 22. Fu, G., Charles, S.P., Chiew, F.H.S., A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow, Water Resources Research, 43,W11419, 2007.
  • 23. Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., Fukushima, Y., Responses of streamflow to climate and land surface change in the headwaters of the Yellow River basin, Water Resources Research, 45 (7), 641-655, 2009.
  • 24. Ma, H., Yang, D., Tan, S.K., Gao, B., Hu, Q., Impact of climate variability and human activity on streamflow decrease in the Miyun reservoir catchment, Journal of Hydrology, 389 (3-4), 317-324, 2010.
  • 25. Chang, J., Zhang, H., Wang, Y., Zhu, Y., Assessing the impact of climate variability and human activities on streamflow variation, Hydrology and Earth System Sciences, 20, 1547-1560, 2016.
  • 26. Seymenov, K., Climate Elasticity of Annual Streamflow in Northwest Bulgaria, Editors: Nedkov S., Zhelezov, G., Ilieva, N., Nikolova, M., Koulov, B., Naydenov, K., Dimitrov, S., Smart Geography, Key Challenges in Geography, Springer, 105-115, 2020.
  • 27. GAP GAP Bölgesel Kalkınma İdaresi Başkanlığı (BKİB). GAP’ta son durum. http://www.gap.gov.tr/gap-ta-son-durum-sayfa-32.html. Yayın tarihi 2018. Erişim tarihi Mayıs 6, 2020.
  • 28. Hargreaves, G.H., Samani, Z.A., Reference crop evapotranspiration from temperature, Applied Engineering Agriculture, 1 (2), 96-99, 1985.
  • 29. Smith, M., CLIMWAT for CROPWAT: A climate database for irrigation planning and management, FAO Irrigation and Drainage Paper 49, FAO, Rome, Italy, 1993.
  • 30. Vanderlinden, K., Giraldez, J., Meirvenne, M.V., Assessing reference evapotranspiration by the Hargreaves method in Southern Spain, Journal of Irrigation and Drainage Engineering, 130 (3), 184-191, 2004.
  • 31. Trajkovic, S., Hargreaves versus Penman-Monteith under humid condition, Journal of Irrigation and Drainage Engineering ASCE, 133 (1), 38-42, 2007.
  • 32. Tabari, H., Hosseinzadeh Talaee, P., Local calibration of the Hargreaves and Pristley-Taylor equations for estimating reference evapotranspiration in arid and cold climates in Iran based on the Penman-Monteith model, Journal Hydrologic Engineering, 16 (10), 837-845, 2011.
  • 33. Subburayan, S., Murugappan, A., Mohan, S., Modified Hargreaves equation for estimation of ETo in a hot and humid location in Tamilnadu State, India, International Journal of Engineering Science and Technology (IJEST), 3 (1), 592-600, 2011.
  • 34. Mohawesh, O.E., Talozi, S.A., Comparison of Hargreaves and FAO56 equations for estimating monthly evapotranspiration for semi-arid and arid environments, Archives of Agronomy and Soil Science, 58 (3), 321-334, 2012.
  • 35. Cobaner, M., Citakoglu, H., Haktanir, T., Kisi, O., Modifying Hargreaves-Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey, Hydrology Research, 48 (2), 480-497, 2017.
  • 36. Almorox, J., Quej, V.H., Martí, P., Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes, Journal of Hydrology, 528, 514-522, 2015.
  • 37. Tigkas, D., Vangelis, H., Tsakiris, G., The Drought Indices Calculator (DrinC), 8th International Conference of EWRA, Water Resources Management in an Interdisciplinary and Changing Context, Porto, Portugal, 1333-1342, 26-29 June, 2013.
  • 38. Mann, H.B., Nonparametric tests against trend, Econometrika,13 (3), 245-259, 1945.
  • 39. Kendall, M.G., Rank Correlation Methods, Griffin, Oxford, England, 1948.
  • 40. Hamed, K.H., Trend detection in hydrologic data: the Mann- Kendall trend test under the scaling hypothesis, Journal of Hydrology, 349 (3-4), 350-363, 2008.
  • 41. Sun, S., Chen, H., Ju, W., Song, J., Zhang, H., Sun, J., Fang, Y., Effects of climate change on annual streamflow using climate elasticity in Poyang Lake basin, China, Theoretical and Applied Climatology, 112 (1-2), 169-183, 2013.
  • 42. Hupet, F., Vanclooster, M., Effect of the sampling frequency of meteorological variaables on the estimation of reference evapotranspiration, Journal of Hydrology, 3, 192-204, 2001.
  • 43. Arora, V.K., The use of the aridity index to assess climate change effect on annual runoff, Journal of Hydrology, 265, 164-177, 2002.
  • 44. Gong, L., Xu, C., Chen, D., Halldin, S., Chen Y.D., Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin, Journal of Hydrology, 3, 620-629, 2006.
  • 45. Liu, X., Liu, W., Xia, J., Comparison of the streamflow sensitivity to aridity index between the Danjiangkou reservoir and Miyun reservoir basin, China, Theoretical and Applied Climatology, 111 (3-4), 683-691, 2013.
  • 46. Buydko, M.I., Evaporation Under Natural Conditions, Israel Program for Scientific Translations, Washington, 1963.
  • 47. Turc, L., Le bilan d’eau des Sols: relations entre les precipitations, l’evaporation et l’ecoulemnet, Ann Agron, 5, 491-569, 1953.
  • 48. Pike, J., The estimation of annual runoff from meteorological data in a tropical climate, Journal of Hydrology, 2 (2), 116-123, 1964.
  • 49. Yenigün, K., Gümüş, V., Bulut, H., Trends in steramflow of the Euphrates basin, Turkey, Water Management, 161 (4), 189-198, 2008.
  • 50. Zhang, L., Dawes, W.R., Walker, G.R., Response of mean annual evapotranspiration to vegetation changes at catchment scale, Water Resources Research, 37 (3), 701-708, 2001.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Abdulrezzak Alivi 0000-0003-2777-5191

Osman Yıldız 0000-0002-5544-101X

Gaye Aktürk 0000-0002-9477-7827

Publication Date May 24, 2021
Submission Date May 18, 2020
Acceptance Date February 9, 2021
Published in Issue Year 2021 Volume: 36 Issue: 3

Cite

APA Alivi, A., Yıldız, O., & Aktürk, G. (2021). Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1449-1466. https://doi.org/10.17341/gazimmfd.739556
AMA Alivi A, Yıldız O, Aktürk G. Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi. GUMMFD. May 2021;36(3):1449-1466. doi:10.17341/gazimmfd.739556
Chicago Alivi, Abdulrezzak, Osman Yıldız, and Gaye Aktürk. “Fırat-Dicle havzasında yıllık Ortalama akımlar üzerinde Iklim değişikliği Etkilerinin Iklim Elastikiyeti Metodu Ile Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no. 3 (May 2021): 1449-66. https://doi.org/10.17341/gazimmfd.739556.
EndNote Alivi A, Yıldız O, Aktürk G (May 1, 2021) Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 3 1449–1466.
IEEE A. Alivi, O. Yıldız, and G. Aktürk, “Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi”, GUMMFD, vol. 36, no. 3, pp. 1449–1466, 2021, doi: 10.17341/gazimmfd.739556.
ISNAD Alivi, Abdulrezzak et al. “Fırat-Dicle havzasında yıllık Ortalama akımlar üzerinde Iklim değişikliği Etkilerinin Iklim Elastikiyeti Metodu Ile Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/3 (May 2021), 1449-1466. https://doi.org/10.17341/gazimmfd.739556.
JAMA Alivi A, Yıldız O, Aktürk G. Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi. GUMMFD. 2021;36:1449–1466.
MLA Alivi, Abdulrezzak et al. “Fırat-Dicle havzasında yıllık Ortalama akımlar üzerinde Iklim değişikliği Etkilerinin Iklim Elastikiyeti Metodu Ile Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 3, 2021, pp. 1449-66, doi:10.17341/gazimmfd.739556.
Vancouver Alivi A, Yıldız O, Aktürk G. Fırat-Dicle havzasında yıllık ortalama akımlar üzerinde iklim değişikliği etkilerinin iklim elastikiyeti metodu ile incelenmesi. GUMMFD. 2021;36(3):1449-66.