Omuz implantları yerleştirildikten belirli bir süre sonra değiştirilmelidir. Ancak bu değişim sırasında implant üreticisini veya modelini belirlemek tıbbi uzmanlar için genellikle hataya açık ve zor bir işlemdir. Bu çalışmanın amacı 597 adet omuz implantı X-ışını görüntülerinden 4 farklı implant üreticisini tespit etmektir. Bu amaçla hem önceden eğitilmiş ESA mimarileri (DenseNet201, DenseNet169, InceptionV3, NasNetLarge, VGG16, VGG19 ve Resnet50) hem de bu mimarilerin YOLOv3 tespit algoritmasıyla beslendiği kademeli modeller oluşturulmuş ve bu modellerin sınıflandırma performansları karşılaştırılmıştır. Kademeli modellerdeki YOLOv3 tespit algoritmasının görevi omuz implantlarının baş bölgesini tespit ederek bu bölgeyi ESA mimarilerine giriş olarak vermektir. Bunun yanı sıra geleneksel makine öğrenmesi yöntemleri topluluk (Ensemble) öğrenme yöntemi ile birleştirilerek veri seti üzerindeki performansları ortaya konulmuştur. En yüksek sınıflandırma performansı %84,76 doğruluk oranıyla kademeli DenseNet201 modelinde elde edilmiştir. Bu oran literatürde benzer veri setini kullanan başka bir çalışmaya göre daha yüksektir. Topluluk modellerin sınıflandırma doğruluğu ise önemli ölçüde ESA modellerinden daha düşüktür. Ayrıca YOLO destekli kademeli modellerin sınıflandırma doğruluğu bireysel ESA modellerinden daha yüksektir. Yani, YOLOV3 tespit algoritması ile implantın baş bölgesine odaklanmak sınıflandırma doğruluğunu artırmıştır. Bu yöntem bu alanda yapılacak sonraki çalışmalara ilham verecektir.
Omuz implantı derin öğrenme evrişimsel sinir ağları nesne tespiti
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 10 Kasım 2021 |
Gönderilme Tarihi | 28 Şubat 2021 |
Kabul Tarihi | 30 Mayıs 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 37 Sayı: 1 |