Year 2022,
Volume: 37 Issue: 2, 967 - 984, 28.02.2022
İbrahim Işık
,
M. Emin Tağluk
,
Esme Işık
References
- [1] Nariman Farsad, “Molecular Communication,” York university, 2014.
- [2] M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images,” Informatics Med. Unlocked, vol. 20, p. 100412, 2020.
- [3] S. D. Tripathi, P. A. Krakowiak, and J. A. Darsey, “Computational Modeling Studies of the Beta-Amyloid Protein Binding to Develop Drugs for the Treatment of Alzheimer ’ s Disease,” vol. 10, no. 5, pp. 1–8, 2017.
- [4] G. Chang, L. Lin, and H. Yan, “Adaptive Detection and ISI Mitigation for Mobile Molecular Communication,” IEEE Trans. Nanobioscience, vol. 17, no. 1, pp. 21–35, 2018.
- [5] L. Chouhan and P. K. Sharma, “Molecular communication in three-dimensional diffusive channel with mobile nanomachines,” Nano Commun. Netw., vol. 24, p. 100296, 2020.
- [6] M. B. Er, E. Isik. I Isik, “Parkinson’s Detection Based on Combined CNN and LSTM Using Enhanced Speech Signals with Variational Mode Decomposition,” Biomed. Signal Process. Control, vol. 70, 2021.
- [7] A. Akkaya, H. B. Yilmaz, C. B. Chae, and T. Tugcu, “Effect of receptor density and size on signal reception in molecular communication via diffusion with an absorbing receiver,” IEEE Commun. Lett., vol. 19, no. 2, pp. 155–158, 2015.
- [8] A. Einolghozati, M. Sardari, and F. Fekri, “Capacity of diffusion-based molecular communication with ligand receptors,” 2011 IEEE Inf. Theory Work. ITW 2011, pp. 85–89, 2011.
- [9] L. Felicetti, M. Femminella, and G. Reali, “Directional receivers for diffusion-based molecular communications,” IEEE Access, vol. PP, no. c, p. 1, 2018.
- [10] H. B. Yilmaz, A. C. Heren, T. Tugcu, and C. Chae, “Three-Dimensional Channel Characteristics for Molecular Communications With an Absorbing Receiver,” 2014.
- [11] Y. Deng, A. Noel, M. Elkashlan, A. Nallanathan, and K. C. Cheung, “Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 1, no. 4, pp. 347–362, 2015.
- [12] Y. Deng, A. Noel, M. Elkashlan, A. Nallanathan, and K. C. Cheung, “Molecular Communication with a Reversible Adsorption Receiver,” EEE ICC 2016 - Commun. Theory Mol., 2016.
- [13] H. B. Yilmaz and C. Chae, “Simulation Modelling Practice and Theory Simulation study of molecular communication systems with an absorbing receiver,” Simul. Model. Pract. Theory, vol. 49, pp. 136–150, 2014.
- [14] D. Malak and O. B. Akan, “Communication theoretical understanding of intra-body nervous nanonetworks,” IEEE Commun. Mag., vol. 52, no. 4, pp. 129–135, 2014.
- [15] A. Noel, K. C. Cheung, and R. Schober, “Optimal Receiver Design for Diffusive Molecular Communication With Flow and Additive Noise,” pp. 1–14, 2013.
- [16] T. H. Nakano, Tadashi, Andrew W. Eckford, Molecular Communication. Cambridge University Press, 2013.
[17] L. J. B., Alberts, Johnson A., Molecular Biology of the Cells, 3rd ed. 2002.
- [18] J. Lewis, M. Raff, and K. Roberts, Cell Biology. Annals of Botany Company, 2003.
- [19] H. Walter and J. Vreeburg, Fluid Sciences and Materials Science in Space - a European Perspective, vol. 50. 1989.
- [20] H. B. Yilmaz, C.-B. Chae, B. Tepekule, and A. E. Pusane, “Arrival Modeling and Error Analysis for Molecular Communication via Diffusion with Drift,” 2014.
- [21] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, A Comprehensive Survey of Recent Advancements in Molecular Communication. 2014.
- [22] S. Jacques and S. Prahl, “Diffusion Theory: Fick’s 1st Law,” Biomedical Optics, 1998. [Online]. Available: https://omlc.org/classroom/ece532/class5/ficks1.html.
- [23] K. Schulten, I. Kosztin, and N. M. Street, “Lectures in Theoretical Biophysics,” 2000.
- [24] A. Mathematics, “Normal Distribution -- from Wolfram MathWorld Normal Distribution -- from Wolfram MathWorld,” Distribution, 2011. .
- [25] H. B. Yilmaz, A. C. Heren, and T. Tugcu, “3-D Channel Characteristics for Molecular Communications with an Absorbing Receiver,” IEEE Commun. Lett. 3-D, pp. 1–4, 2014.
- [26] W. Guo, T. Asyhari, N. Farsad, H. B. Yilmaz, B. Li, A. Eckford, and C. B. Chae, “Molecular communications: Channel model and physical layer techniques,” IEEE Wirel. Commun., vol. 23, no. 4, pp. 120–127, 2016.
- [27] A. W. Eckford, “Nanoscale Communication with Brownian Motion,” in 41st Annual Conference on Information Sciences and Systems, 2007, pp. 160–165.
- [28] F. N. Kiliçli, M. T. Özşahİn, H. B. Yilmaz, M. Ş. Kuran, and T. Tuğcu, “HaberleşmeÜzeri̇ne İşti̇ri̇lmi̇ş Modeller.”
- [29] A. Akkaya and T. Tugcu, “dMCS: Distributed Molecular Communication Simulator,” no. September 2014, 2013.
- [30] L. Felicetti, M. Femminella, and G. Reali, “Smart Antennas for Diffusion-based Molecular Communications,” Proc. Second Annu. Int. Conf. Nanoscale Comput. Commun., no. September, p. 27:1--27:6, 2015.
Fick difüzyon yasası kullanılarak nano/mikro ölçekli haberleşme sistemlerinde girişim ve molekül alım olasılığı analizi
Year 2022,
Volume: 37 Issue: 2, 967 - 984, 28.02.2022
İbrahim Işık
,
M. Emin Tağluk
,
Esme Işık
Abstract
Nano ve mikro ölçekteki sistemlerin iletişim mekanizmasını modellemek için canlıların kullandığı nano-ölçekteki elektro-kimyasal haberleşme sistemlerinden esinlenerek (biyolojik esinli) yeni haberleşme tekniklerinin geliştirilmesi üzerine son zamanlarda yoğun bir şekilde çalışma yapılmaktadır. Bilgi alışverişinde taşıyıcı olarak kimyasal sinyallerin kullanıldığı bu alan nano/mikro ölçekli haberleşme (NMÖH) olarak bilinmektedir. Moleküler haberleşme sistemlerinde iletim için kullanılan bilgi parçacıkları protein, DNA gibi biyolojik bileşenlerden oluşmaktadır. NMÖH konusu ile ilgili yapılacak çalışmaların, günümüzde henüz tedavisi olmayan bazı hastalıkların teşhis ve tedavinde kullanılan yeni nesil gibi nano-teknoloji alandaki gelişmelere büyük katkılar sağlayacağı düşünülmektedir. Bu sebeple bu çalışmada, nano-ölçekli sistemlerde kullanılma potansiyeli olabilecek yeni bir NMÖH modeli yazılım tabanlı olarak Matlab ortamında geliştirilip analiz edilmiştir. Yazılım tabanlı olarak tasarlanan NMÖH modelinde, ilk olarak moleküllerin iletildiği difüzyon ortamı ve bu ortamda iletişim performansını etkileyen faktörlerden biri olan difüzyon sabiti Fick yasası gibi temel fizik kanunları kullanılarak yeniden türetilmiştir. Daha sonra ise alıcı topolojisi küre, küp ve dikdörtgen prizma gibi değişik formlarda denenerek alıcının sinyal iletim oranı arttırılmaya ve iletim sırasında meydana gelen moleküller arası girişim düşürülmeye çalışılmıştır. Küp alıcı modelinin kullanılması ile sinyal iletim oranının arttığı ve girişimin düştüğü görülmüştür. Önerilen NMÖH modelinin, başta Alzaymır olmak üzere hücrelerin yanlış ve/veya eksik iletişiminden kaynaklı birçok hastalığın teşhis ve tedavisinde kullanılabilecek potansiyelde olduğu düşünülmektedir.
References
- [1] Nariman Farsad, “Molecular Communication,” York university, 2014.
- [2] M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images,” Informatics Med. Unlocked, vol. 20, p. 100412, 2020.
- [3] S. D. Tripathi, P. A. Krakowiak, and J. A. Darsey, “Computational Modeling Studies of the Beta-Amyloid Protein Binding to Develop Drugs for the Treatment of Alzheimer ’ s Disease,” vol. 10, no. 5, pp. 1–8, 2017.
- [4] G. Chang, L. Lin, and H. Yan, “Adaptive Detection and ISI Mitigation for Mobile Molecular Communication,” IEEE Trans. Nanobioscience, vol. 17, no. 1, pp. 21–35, 2018.
- [5] L. Chouhan and P. K. Sharma, “Molecular communication in three-dimensional diffusive channel with mobile nanomachines,” Nano Commun. Netw., vol. 24, p. 100296, 2020.
- [6] M. B. Er, E. Isik. I Isik, “Parkinson’s Detection Based on Combined CNN and LSTM Using Enhanced Speech Signals with Variational Mode Decomposition,” Biomed. Signal Process. Control, vol. 70, 2021.
- [7] A. Akkaya, H. B. Yilmaz, C. B. Chae, and T. Tugcu, “Effect of receptor density and size on signal reception in molecular communication via diffusion with an absorbing receiver,” IEEE Commun. Lett., vol. 19, no. 2, pp. 155–158, 2015.
- [8] A. Einolghozati, M. Sardari, and F. Fekri, “Capacity of diffusion-based molecular communication with ligand receptors,” 2011 IEEE Inf. Theory Work. ITW 2011, pp. 85–89, 2011.
- [9] L. Felicetti, M. Femminella, and G. Reali, “Directional receivers for diffusion-based molecular communications,” IEEE Access, vol. PP, no. c, p. 1, 2018.
- [10] H. B. Yilmaz, A. C. Heren, T. Tugcu, and C. Chae, “Three-Dimensional Channel Characteristics for Molecular Communications With an Absorbing Receiver,” 2014.
- [11] Y. Deng, A. Noel, M. Elkashlan, A. Nallanathan, and K. C. Cheung, “Modeling and Simulation of Molecular Communication Systems with a Reversible Adsorption Receiver,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 1, no. 4, pp. 347–362, 2015.
- [12] Y. Deng, A. Noel, M. Elkashlan, A. Nallanathan, and K. C. Cheung, “Molecular Communication with a Reversible Adsorption Receiver,” EEE ICC 2016 - Commun. Theory Mol., 2016.
- [13] H. B. Yilmaz and C. Chae, “Simulation Modelling Practice and Theory Simulation study of molecular communication systems with an absorbing receiver,” Simul. Model. Pract. Theory, vol. 49, pp. 136–150, 2014.
- [14] D. Malak and O. B. Akan, “Communication theoretical understanding of intra-body nervous nanonetworks,” IEEE Commun. Mag., vol. 52, no. 4, pp. 129–135, 2014.
- [15] A. Noel, K. C. Cheung, and R. Schober, “Optimal Receiver Design for Diffusive Molecular Communication With Flow and Additive Noise,” pp. 1–14, 2013.
- [16] T. H. Nakano, Tadashi, Andrew W. Eckford, Molecular Communication. Cambridge University Press, 2013.
[17] L. J. B., Alberts, Johnson A., Molecular Biology of the Cells, 3rd ed. 2002.
- [18] J. Lewis, M. Raff, and K. Roberts, Cell Biology. Annals of Botany Company, 2003.
- [19] H. Walter and J. Vreeburg, Fluid Sciences and Materials Science in Space - a European Perspective, vol. 50. 1989.
- [20] H. B. Yilmaz, C.-B. Chae, B. Tepekule, and A. E. Pusane, “Arrival Modeling and Error Analysis for Molecular Communication via Diffusion with Drift,” 2014.
- [21] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, A Comprehensive Survey of Recent Advancements in Molecular Communication. 2014.
- [22] S. Jacques and S. Prahl, “Diffusion Theory: Fick’s 1st Law,” Biomedical Optics, 1998. [Online]. Available: https://omlc.org/classroom/ece532/class5/ficks1.html.
- [23] K. Schulten, I. Kosztin, and N. M. Street, “Lectures in Theoretical Biophysics,” 2000.
- [24] A. Mathematics, “Normal Distribution -- from Wolfram MathWorld Normal Distribution -- from Wolfram MathWorld,” Distribution, 2011. .
- [25] H. B. Yilmaz, A. C. Heren, and T. Tugcu, “3-D Channel Characteristics for Molecular Communications with an Absorbing Receiver,” IEEE Commun. Lett. 3-D, pp. 1–4, 2014.
- [26] W. Guo, T. Asyhari, N. Farsad, H. B. Yilmaz, B. Li, A. Eckford, and C. B. Chae, “Molecular communications: Channel model and physical layer techniques,” IEEE Wirel. Commun., vol. 23, no. 4, pp. 120–127, 2016.
- [27] A. W. Eckford, “Nanoscale Communication with Brownian Motion,” in 41st Annual Conference on Information Sciences and Systems, 2007, pp. 160–165.
- [28] F. N. Kiliçli, M. T. Özşahİn, H. B. Yilmaz, M. Ş. Kuran, and T. Tuğcu, “HaberleşmeÜzeri̇ne İşti̇ri̇lmi̇ş Modeller.”
- [29] A. Akkaya and T. Tugcu, “dMCS: Distributed Molecular Communication Simulator,” no. September 2014, 2013.
- [30] L. Felicetti, M. Femminella, and G. Reali, “Smart Antennas for Diffusion-based Molecular Communications,” Proc. Second Annu. Int. Conf. Nanoscale Comput. Commun., no. September, p. 27:1--27:6, 2015.