Research Article
BibTex RIS Cite

Determination of hardening model coefficients by using optimization method in finite element analysis

Year 2022, Volume: 37 Issue: 4, 2091 - 2104, 28.02.2022
https://doi.org/10.17341/gazimmfd.654200

Abstract

In this study, plasticity models have been developed to be used in cold forging simulations of AA7075-T6 alloy which is widely used in aviation industry. In addition, the coefficients of the obtained models have been calibrated using genetic algorithm optimization method. As the hardening rule in models; bilinear isotropic is combined with Chaboche's nonlinear kinematic hardening rule (three terms). Plasticity models have been obtained by using the associated flow rule and Hill48 yield criterion in addition to the hardening rules. Experimental stress values have been compared with those obtained from the models. As a result, the most suitable hardening model for monotonic/ cyclic loading deformation conditions is presented and the effects of the model parameters on the results are shown.

References

  • Prager W., Recent developments in the mathematical theory of plasticity, 20 (3), 235-241, 1949.
  • Ziegler H., A modification of Prager's hardening rule, 17 (1), 55-66, 1959.
  • Armstrong P.J. ve Frederick C.O., A Mathematical Representation of the Multiaxial Bauschinger Effect, CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories. , 1966.
  • Chaboche J.L., Time-independent constitutive theories for cyclic plasticity, 2 (2), 149-188, 1986.
  • Chaboche J.L., Constitutive-Equations for Cyclic Plasticity and Cyclic Viscoplasticity, Int J Plasticity Int J Plasticity, 5 (3), 247-302, 1989.
  • Bouhamed A., Jrad H., Said L.B., Wali M.Dammak F., A non-associated anisotropic plasticity model with mixed isotropic–kinematic hardening for finite element simulation of incremental sheet metal forming process, 100 (1), 929-940, 2019.
  • Bari S. ve Hassan T., Anatomy of coupled constitutive models for ratcheting simulation, 16 (3), 381-409, 2000.
  • Bari S. ve Hassan T., Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation, 17 (7), 885-905, 2001.
  • Rezaiee-Pajand M. ve Sinaie S., On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction, 46 (16), 3009-3017, 2009.
  • Rouse J.P., Hyde C.J., Sun W.Hyde T.H., Effective determination of cyclic-visco-plasticity material properties using an optimisation procedure and experimental data exhibiting scatter, 30 (2), 117-128, 2013.
  • Rouse J.P., Hyde C.J., Sun W.Hyde T.H., Pragmatic optimisation methods for determining material constants of viscoplasticity model from isothermal experimental data, 30 (1), 54-62, 2014.
  • Broggiato G.B., Campana F.Cortese L., The Chaboche nonlinear kinematic hardening model: calibration methodology and validation, 43 (2), 115-124, 2008.
  • Franulović M., Basan R.Prebil I., Genetic algorithm in material model parameters’ identification for low-cycle fatigue, 45 (2), 505-510, 2009.
  • Mahmoudi A.H., Pezeshki-Najafabadi S.M.Badnava H., Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm, 50 (3), 1114-1122, 2011.
  • Mahmoudi A.H., Badnava H.Pezeshki-Najafabadi S.M., An application of Chaboche model to predict uniaxial and multiaxial ratcheting, 10, 1924-1929, 2011.
  • Badnava H., Pezeshki S.M., Fallah Nejad K.Farhoudi H.R., Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method, 26 (10), 3067-3072, 2012.
  • Chaparro B.M., Thuillier S., Menezes L.F., Manach P.Y.Fernandes J.V., Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms, 44 (2), 339-346, 2008.
  • Nath A., Ray K.K.Barai S.V., Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique, 152, 138-150, 2019.
  • Shojaeefard M.H., Behnagh R.A., Akbari M., Givi M.K.B.Farhani F., Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm, 44, 190-198, 2013.
  • Moslemi N., Gol Zardian M., Ayob A., Redzuan N.Rhee S., Evaluation of Sensitivity and Calibration of the Chaboche Kinematic Hardening Model Parameters for Numerical Ratcheting Simulation, 9 (12), 2578, 2019.
  • Kacar İ. ve Kılıç S., Pekleşme Kuralları, in Mühendislik Alanında Yenilikçi Yaklaşımlar, Editör: Güngör P.D.T., Kılıç D.D.G.B., Uyumaz D.D.A.Görgülü D.Ö.Ü.S., Gece Kitaplığı, ANKARA / TURKEY, 175-194, 2018.
  • Sharma V.M.J., Rao G.S., Sharma S.C.George K.M., Low Cycle Fatigue Behavior of AA2219-T87 at Room Temperature, 3 (1), 103-126, 2014.
  • Kacar İ. ve Toros S., Buckling Prevention Conditions on Cyclic Test Samples, in 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), Adana, Çukurova Üniversitesi, 2016.
  • Tang B.T., Zhao G.Q.Wang Z.Q., A mixed hardening rule coupled with Hill48' yielding function to predict the springback of sheet U-bending, Int J Mater Form, 1 (3), 169-175, 2008.
  • Qu F., Jiang Z.Lu H., Effect of Mesh on Springback in 3D Finite Element Analysis of Flexible Microrolling, 2015, 1-7, 2015.
  • Tong J., Zhan Z.L.Vermeulen B., Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations, 26 (8), 829-837, 2004.
  • Rezaiee-Pajand M. ve Sinaie S., On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction, Int J Solids Struct, 46 (16), 3009-3017, 2009.
  • Moslemi N., Gol Zardian M., Ayob A., Redzuan N.Rhee S., Evaluation of Sensitivity and Calibration of the Chaboche Kinematic Hardening Model Parameters for Numerical Ratcheting Simulation, 9, 2578, 2019.
  • Sharcnet(c), 32.2. Modeling. https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_tec/teccurvefitchabmodel.html, Yayın tarihi 2018. Güncellenme tarihi 2018. Erişim tarihi 2018.
  • Qu F., Jiang Z.Lu H., Effect of Mesh on Springback in 3D Finite Element Analysis of Flexible Microrolling, 2015, 147-160, 2015.
  • Support_Ansys, Video Demo: Material Curve Fitting. https://support.ansys.com/staticassets/ANSYS/staticassets/techmedia/material_curve_fitting.html, Yayın tarihi 2016. Güncellenme tarihi 2016. Erişim tarihi 2016.

7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu

Year 2022, Volume: 37 Issue: 4, 2091 - 2104, 28.02.2022
https://doi.org/10.17341/gazimmfd.654200

Abstract

Bu çalışmada, havacılık endüstrisinde yoğun olarak kullanılan AA7075-T6 alaşımının soğuk dövülmesi simülasyonlarında kullanılmak üzere plastisite modelleri oluşturulmuştur. Ayrıca elde edilen modellerin katsayıları genetik algoritma optimizasyon yöntemi kullanılarak kalibre edilmiştir. Modellerde pekleşme kuralı olarak; bilinear izotropik ile Chaboche’nin nonlinear kinematik pekleşme kuralı (üç terimli) birleştirilmiştir. Pekleşme kurallarının yanında ilişkili akış kuralı ve Hill48 akma kriteri kullanılarak plastisite modelleri elde edilmiştir. Deneysel gerilme değerleri ile modellerden elde edilen değerler kıyaslanmıştır. Sonuç olarak monotonik/döngüsel yüklemeli deformasyon durumları için en uygun pekleşme modeli sunulmuştur ve model parametrelerinin sonuçlar üzerine etkileri gösterilmiştir.

References

  • Prager W., Recent developments in the mathematical theory of plasticity, 20 (3), 235-241, 1949.
  • Ziegler H., A modification of Prager's hardening rule, 17 (1), 55-66, 1959.
  • Armstrong P.J. ve Frederick C.O., A Mathematical Representation of the Multiaxial Bauschinger Effect, CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories. , 1966.
  • Chaboche J.L., Time-independent constitutive theories for cyclic plasticity, 2 (2), 149-188, 1986.
  • Chaboche J.L., Constitutive-Equations for Cyclic Plasticity and Cyclic Viscoplasticity, Int J Plasticity Int J Plasticity, 5 (3), 247-302, 1989.
  • Bouhamed A., Jrad H., Said L.B., Wali M.Dammak F., A non-associated anisotropic plasticity model with mixed isotropic–kinematic hardening for finite element simulation of incremental sheet metal forming process, 100 (1), 929-940, 2019.
  • Bari S. ve Hassan T., Anatomy of coupled constitutive models for ratcheting simulation, 16 (3), 381-409, 2000.
  • Bari S. ve Hassan T., Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation, 17 (7), 885-905, 2001.
  • Rezaiee-Pajand M. ve Sinaie S., On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction, 46 (16), 3009-3017, 2009.
  • Rouse J.P., Hyde C.J., Sun W.Hyde T.H., Effective determination of cyclic-visco-plasticity material properties using an optimisation procedure and experimental data exhibiting scatter, 30 (2), 117-128, 2013.
  • Rouse J.P., Hyde C.J., Sun W.Hyde T.H., Pragmatic optimisation methods for determining material constants of viscoplasticity model from isothermal experimental data, 30 (1), 54-62, 2014.
  • Broggiato G.B., Campana F.Cortese L., The Chaboche nonlinear kinematic hardening model: calibration methodology and validation, 43 (2), 115-124, 2008.
  • Franulović M., Basan R.Prebil I., Genetic algorithm in material model parameters’ identification for low-cycle fatigue, 45 (2), 505-510, 2009.
  • Mahmoudi A.H., Pezeshki-Najafabadi S.M.Badnava H., Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm, 50 (3), 1114-1122, 2011.
  • Mahmoudi A.H., Badnava H.Pezeshki-Najafabadi S.M., An application of Chaboche model to predict uniaxial and multiaxial ratcheting, 10, 1924-1929, 2011.
  • Badnava H., Pezeshki S.M., Fallah Nejad K.Farhoudi H.R., Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method, 26 (10), 3067-3072, 2012.
  • Chaparro B.M., Thuillier S., Menezes L.F., Manach P.Y.Fernandes J.V., Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms, 44 (2), 339-346, 2008.
  • Nath A., Ray K.K.Barai S.V., Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique, 152, 138-150, 2019.
  • Shojaeefard M.H., Behnagh R.A., Akbari M., Givi M.K.B.Farhani F., Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm, 44, 190-198, 2013.
  • Moslemi N., Gol Zardian M., Ayob A., Redzuan N.Rhee S., Evaluation of Sensitivity and Calibration of the Chaboche Kinematic Hardening Model Parameters for Numerical Ratcheting Simulation, 9 (12), 2578, 2019.
  • Kacar İ. ve Kılıç S., Pekleşme Kuralları, in Mühendislik Alanında Yenilikçi Yaklaşımlar, Editör: Güngör P.D.T., Kılıç D.D.G.B., Uyumaz D.D.A.Görgülü D.Ö.Ü.S., Gece Kitaplığı, ANKARA / TURKEY, 175-194, 2018.
  • Sharma V.M.J., Rao G.S., Sharma S.C.George K.M., Low Cycle Fatigue Behavior of AA2219-T87 at Room Temperature, 3 (1), 103-126, 2014.
  • Kacar İ. ve Toros S., Buckling Prevention Conditions on Cyclic Test Samples, in 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), Adana, Çukurova Üniversitesi, 2016.
  • Tang B.T., Zhao G.Q.Wang Z.Q., A mixed hardening rule coupled with Hill48' yielding function to predict the springback of sheet U-bending, Int J Mater Form, 1 (3), 169-175, 2008.
  • Qu F., Jiang Z.Lu H., Effect of Mesh on Springback in 3D Finite Element Analysis of Flexible Microrolling, 2015, 1-7, 2015.
  • Tong J., Zhan Z.L.Vermeulen B., Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations, 26 (8), 829-837, 2004.
  • Rezaiee-Pajand M. ve Sinaie S., On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction, Int J Solids Struct, 46 (16), 3009-3017, 2009.
  • Moslemi N., Gol Zardian M., Ayob A., Redzuan N.Rhee S., Evaluation of Sensitivity and Calibration of the Chaboche Kinematic Hardening Model Parameters for Numerical Ratcheting Simulation, 9, 2578, 2019.
  • Sharcnet(c), 32.2. Modeling. https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_tec/teccurvefitchabmodel.html, Yayın tarihi 2018. Güncellenme tarihi 2018. Erişim tarihi 2018.
  • Qu F., Jiang Z.Lu H., Effect of Mesh on Springback in 3D Finite Element Analysis of Flexible Microrolling, 2015, 147-160, 2015.
  • Support_Ansys, Video Demo: Material Curve Fitting. https://support.ansys.com/staticassets/ANSYS/staticassets/techmedia/material_curve_fitting.html, Yayın tarihi 2016. Güncellenme tarihi 2016. Erişim tarihi 2016.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

İlyas Kacar 0000-0002-5887-8807

Süleyman Kılıç 0000-0002-1681-9403

Publication Date February 28, 2022
Submission Date December 2, 2019
Acceptance Date November 27, 2021
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Kacar, İ., & Kılıç, S. (2022). 7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 2091-2104. https://doi.org/10.17341/gazimmfd.654200
AMA Kacar İ, Kılıç S. 7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu. GUMMFD. February 2022;37(4):2091-2104. doi:10.17341/gazimmfd.654200
Chicago Kacar, İlyas, and Süleyman Kılıç. “7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik Plastisite Model Parametrelerinin Tespiti Ve Tersine Analiz Ile Kalibrasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 4 (February 2022): 2091-2104. https://doi.org/10.17341/gazimmfd.654200.
EndNote Kacar İ, Kılıç S (February 1, 2022) 7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 2091–2104.
IEEE İ. Kacar and S. Kılıç, “7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu”, GUMMFD, vol. 37, no. 4, pp. 2091–2104, 2022, doi: 10.17341/gazimmfd.654200.
ISNAD Kacar, İlyas - Kılıç, Süleyman. “7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik Plastisite Model Parametrelerinin Tespiti Ve Tersine Analiz Ile Kalibrasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (February 2022), 2091-2104. https://doi.org/10.17341/gazimmfd.654200.
JAMA Kacar İ, Kılıç S. 7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu. GUMMFD. 2022;37:2091–2104.
MLA Kacar, İlyas and Süleyman Kılıç. “7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik Plastisite Model Parametrelerinin Tespiti Ve Tersine Analiz Ile Kalibrasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 4, 2022, pp. 2091-04, doi:10.17341/gazimmfd.654200.
Vancouver Kacar İ, Kılıç S. 7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu. GUMMFD. 2022;37(4):2091-104.