Research Article
BibTex RIS Cite

AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi

Year 2022, Volume: 37 Issue: 4, 2057 - 2066, 28.02.2022
https://doi.org/10.17341/gazimmfd.948426

Abstract

Bu çalışmada, endüstride yüksek mukavemet gerektiren uygulamalarda kullanılmasına rağmen talaşlı imalatla ilgili karakterizasyon özellikleri (kesme gücü Pc, özgül kesme enerjisi ps ve yüzey pürüzlülüğü Ra) hakkında bilgi bulunmayan 8740 çeliğinin deneysel olarak Pc, ps ve Ra değerleri değişik işleme parametreleri (diş başı ilerlemesi fz ve zıt- ve eş-yönlü frezeleme işlemleri) için bulunmuştur. Tezgâhın değişik işleme koşullarındaki güç hesaplamalarında şebekeden çekilen akım değerleri (işleme olmadan ve işleme sırasında) kullanılmıştır. fz değerinin artışıyla zıt- ve eş-yönlü frezeme işlemlerinde ps değerinin azaldığı, Ra değerlerinin arttığı, eş yönlü frezelemede zıt yönlü frezelemeye göre daha düşük Pc, ps ve Ra değerleri elde edildiği tespit edilmiştir. Malzemenin ps değerleri deneylerde kullanılan kesme koşulları için 7,1-15,7 Ws/mm3 değerleri arasında bulunmuştur.

References

  • Kuram E., Nose radius and cutting speed effects during milling of AISI 304 material, Mater. Manuf. Process., 32(2), 185-192, 2017.
  • Deng Z., Zhang H., Fu Y., Wan L., Liu W., Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption, J. Clean. Prod., 166, 1407-1414, 2017.
  • Zhang H., Deng Z., Fu Y., Lv L., Yan C., A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions, J. Clean. Prod., 148, 174-184, 2017.
  • Liu N., Wang S.B., Zhang Y.F., Lu W.F., A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075, Int. J. Mech. Sci., 118, 13-20, 2016.
  • Dhar N.R., Kamruzzaman M., Effects of cryogenic cooling on temperature, tool wear, surface roughness and dimensional deviation in turning AISI-8740 steel by coated carbide, Proc. of the 1st Int. Conf. & 7th AUN/SEED-Net Fieldwise Seminar on Manuf. and Mater. Process., Kuala Lumpur, 36-41, 2006.
  • Liu G., Huang C., Zhu H., Liu Z., Liu, Y., Li, C., The modified surface properties and fatigue life of Incoloy A286 face-milled at different cutting parameters, Mater. Sci. Eng. A, 704, 1-9, 2017.
  • Urbikain G., de Lacalle L.N.L., Modelling of surface roughness in inclined milling operations with circle segment end mills, Simul. Model. Pract. Theory, 84, 161-176, 2018.
  • Yao C.F., Wu D.X., Ma L.F., Tan L., Zhou Z.,Zhang J.Y., Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy, Appl. Surf. Sci., 387, 1257–1264, 2016.
  • Yao C.F., Wu D.X., Tan L., Ren J.X., Shi K.N., Yang Z.C., Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6, P. I. Mech. Eng. B-J. Eng., 227, 483-493, 2013.
  • Yao C.F., Wu D.X., Jin Q.C., Huang X.C., Ren J.X., Zhang D.H., Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy, Trans. Nonferr. Metal Soc., 23, 650-660, 2013.
  • Lee B.Y., Tarng Y.S., Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations, J. Mater. Process. Technol., 105 (1-2), 61-66, 2000.
  • Mesquita R., Krasteva E., Doytchinov S., Computer-aided selection of optimum machining parameters in multipass turning, Int. J. Adv. Manuf. Technol., 10 (1), 19-26, 1995.
  • Okazaki Y., Mishima N., Ashida K., Microfactory Concept, History, and Developments, J. Manuf. Sci. Eng., 126 (4), 837-844, 2004.
  • Liow J.L., Mechanical micromachining: a sustainable micro-device manufacturing approach, J. Clean. Prod., 17 (7), 662-667, 2009.
  • Hadad M., Ramezani M., Modeling and analysis of a novel approach in machining and structuring of flat surfaces using face milling process, Int. J. Mach. Tools Manuf., 105, 32-44, 2016.
  • Khomenko V.A., Cherdancev A.O., Cherdancev P.O., Goncharov V.D., Kulawik A., Analysis of the Face Milling Process Based on the Imitation Modelling, IOP Conf. Ser. Mater. Sci. Eng., 126, 012001, 2016.
  • Felhő C., Karpuschewski B., Kundrák J., Surface roughness modelling in face milling, Procedia CIRP, 31, 136-141, 2015.
  • Serin G., Kahya M., Özbayoğlu M., Ünver H.Ö., TI6AL4V malzemesinin tornalama işleminde özgül kesme enerjisi ve yüzey pürüzlüğünün incelenmesi ve yapay sinir ağları temelli tahmin modeli geliştirilmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24 (2), 517-536, 2019.
  • Kara S., Li W., Unit process energy consumption models for material removal processes. CIRP annals, 60 (1), 37-40, 2011.
  • Gutowski T., Dahmus J., Thiriez A., Electrical energy requirements for manufacturing processes, 13th CIRP Int. Conf. on Life Cycle Eng., Leuven, 623-627, 2006.
  • Li, W., Kara, S., An empirical model for predicting energy consumption of manufacturing processes: a case of turning process, P. I. Mech. Eng. B-J. Eng., 225 (9), 1636-1646, 2011.
  • Li L., Yan J., Xing Z., Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling, J. Clean. Prod., 52, 113-121, 2013.
  • Diaz N., Redelsheimer E., Dornfeld D., Energy consumption characterization and reduction strategies for milling machine tool use, Glocalized Solutions for Sustainability in Manufacturing: 18th CIRP Int. Conf. on Life Cycle Eng, Braunschweig, 263-267, 2011.
  • Draganescu F., Gheorghe M., Doicin, C.V., Models of machine tool efficiency and specific consumed energy, J. Mater. Process. Technol., 141 (1), 9-15, 2003.
  • Velchev, S., Kolev I., Ivanov K., Gechevski S., Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning, J. Clean. Prod., 80, 139-149, 2014.
  • Aramcharoen A., Mativenga P.T., Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy, J. Clean. Prod., 78, 63-74, 2014.
  • Balogun V.A., Mativenga, P.T., Impact of un-deformed chip thickness on specific energy in mechanical machining processes, J. Clean. Prod., 69, 260-268, 2014.
  • Kuram E., Ozcelik B., Bayramoglu M., Demirbas E., Simsek, B.T., Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments, J. Clean. Prod., 42, 159-166, 2013.
  • Sealy M.P., Liu Z.Y., Zhang D., Guo Y.B., Liu, Z.Q., Energy consumption and modeling in precision hard milling, J. Clean. Prod., 135, 1591-1601, 2016.
  • Özturk B., Kara F., Calculation and estimation of surface roughness and energy consumption in milling of 6061 alloy, Adv. Mater. Sci. Eng., 8, 1-12, 2020.
  • Boothroyd G., Knight W.A., Fundamentals of Machining and Machine Tools 3rd ed., Taylor&Francis, 2005.
  • Balázs B.Z., Jacsó Á., Takács M., Micromachining of hardened hot-work tool steel: effects of milling strategies, Int. J. Adv. Manuf. Technol., 108 (9), 2839-2854, 2020.
  • Pa N.M.N., Sarhan A.A.D., Shukor M.H.A., Mohamed M.A.H., Investigate the lubrication effects on cutting force and power consumption in up and down end milling, In Adv. Mat. Res., Trans Tech Publications Ltd., 748, 264-268, 2013.
  • Zhu Z., Peng, F., Tang X., Yan R., Li Z., Chen C., Sun H., Specific cutting energy index (SCEI)-based process signature for high-performance milling of hardened steel, Int. J. Adv. Manuf. Technol., 103 (1), 1-13, 2019.
  • Wang G., Liu Z., Huang W., Wang B., Niu J., Influence of cutting parameters on surface roughness and strain hardening during milling NiTi shape memory alloy, Int. J. Adv. Manuf. Technol., 102 (5), 2211-2221, 2019.
  • Michalik P., Zajac J., Hatala M., Mital D., Fecova V., Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling, Measurement, 58, 416-428, 2014.
  • Akkurt M., Talaş kaldırma yöntemleri ve takım tezgahları, Birsen Yayınevi, 1991.
Year 2022, Volume: 37 Issue: 4, 2057 - 2066, 28.02.2022
https://doi.org/10.17341/gazimmfd.948426

Abstract

References

  • Kuram E., Nose radius and cutting speed effects during milling of AISI 304 material, Mater. Manuf. Process., 32(2), 185-192, 2017.
  • Deng Z., Zhang H., Fu Y., Wan L., Liu W., Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption, J. Clean. Prod., 166, 1407-1414, 2017.
  • Zhang H., Deng Z., Fu Y., Lv L., Yan C., A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions, J. Clean. Prod., 148, 174-184, 2017.
  • Liu N., Wang S.B., Zhang Y.F., Lu W.F., A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075, Int. J. Mech. Sci., 118, 13-20, 2016.
  • Dhar N.R., Kamruzzaman M., Effects of cryogenic cooling on temperature, tool wear, surface roughness and dimensional deviation in turning AISI-8740 steel by coated carbide, Proc. of the 1st Int. Conf. & 7th AUN/SEED-Net Fieldwise Seminar on Manuf. and Mater. Process., Kuala Lumpur, 36-41, 2006.
  • Liu G., Huang C., Zhu H., Liu Z., Liu, Y., Li, C., The modified surface properties and fatigue life of Incoloy A286 face-milled at different cutting parameters, Mater. Sci. Eng. A, 704, 1-9, 2017.
  • Urbikain G., de Lacalle L.N.L., Modelling of surface roughness in inclined milling operations with circle segment end mills, Simul. Model. Pract. Theory, 84, 161-176, 2018.
  • Yao C.F., Wu D.X., Ma L.F., Tan L., Zhou Z.,Zhang J.Y., Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy, Appl. Surf. Sci., 387, 1257–1264, 2016.
  • Yao C.F., Wu D.X., Tan L., Ren J.X., Shi K.N., Yang Z.C., Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6, P. I. Mech. Eng. B-J. Eng., 227, 483-493, 2013.
  • Yao C.F., Wu D.X., Jin Q.C., Huang X.C., Ren J.X., Zhang D.H., Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy, Trans. Nonferr. Metal Soc., 23, 650-660, 2013.
  • Lee B.Y., Tarng Y.S., Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations, J. Mater. Process. Technol., 105 (1-2), 61-66, 2000.
  • Mesquita R., Krasteva E., Doytchinov S., Computer-aided selection of optimum machining parameters in multipass turning, Int. J. Adv. Manuf. Technol., 10 (1), 19-26, 1995.
  • Okazaki Y., Mishima N., Ashida K., Microfactory Concept, History, and Developments, J. Manuf. Sci. Eng., 126 (4), 837-844, 2004.
  • Liow J.L., Mechanical micromachining: a sustainable micro-device manufacturing approach, J. Clean. Prod., 17 (7), 662-667, 2009.
  • Hadad M., Ramezani M., Modeling and analysis of a novel approach in machining and structuring of flat surfaces using face milling process, Int. J. Mach. Tools Manuf., 105, 32-44, 2016.
  • Khomenko V.A., Cherdancev A.O., Cherdancev P.O., Goncharov V.D., Kulawik A., Analysis of the Face Milling Process Based on the Imitation Modelling, IOP Conf. Ser. Mater. Sci. Eng., 126, 012001, 2016.
  • Felhő C., Karpuschewski B., Kundrák J., Surface roughness modelling in face milling, Procedia CIRP, 31, 136-141, 2015.
  • Serin G., Kahya M., Özbayoğlu M., Ünver H.Ö., TI6AL4V malzemesinin tornalama işleminde özgül kesme enerjisi ve yüzey pürüzlüğünün incelenmesi ve yapay sinir ağları temelli tahmin modeli geliştirilmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24 (2), 517-536, 2019.
  • Kara S., Li W., Unit process energy consumption models for material removal processes. CIRP annals, 60 (1), 37-40, 2011.
  • Gutowski T., Dahmus J., Thiriez A., Electrical energy requirements for manufacturing processes, 13th CIRP Int. Conf. on Life Cycle Eng., Leuven, 623-627, 2006.
  • Li, W., Kara, S., An empirical model for predicting energy consumption of manufacturing processes: a case of turning process, P. I. Mech. Eng. B-J. Eng., 225 (9), 1636-1646, 2011.
  • Li L., Yan J., Xing Z., Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling, J. Clean. Prod., 52, 113-121, 2013.
  • Diaz N., Redelsheimer E., Dornfeld D., Energy consumption characterization and reduction strategies for milling machine tool use, Glocalized Solutions for Sustainability in Manufacturing: 18th CIRP Int. Conf. on Life Cycle Eng, Braunschweig, 263-267, 2011.
  • Draganescu F., Gheorghe M., Doicin, C.V., Models of machine tool efficiency and specific consumed energy, J. Mater. Process. Technol., 141 (1), 9-15, 2003.
  • Velchev, S., Kolev I., Ivanov K., Gechevski S., Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning, J. Clean. Prod., 80, 139-149, 2014.
  • Aramcharoen A., Mativenga P.T., Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy, J. Clean. Prod., 78, 63-74, 2014.
  • Balogun V.A., Mativenga, P.T., Impact of un-deformed chip thickness on specific energy in mechanical machining processes, J. Clean. Prod., 69, 260-268, 2014.
  • Kuram E., Ozcelik B., Bayramoglu M., Demirbas E., Simsek, B.T., Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments, J. Clean. Prod., 42, 159-166, 2013.
  • Sealy M.P., Liu Z.Y., Zhang D., Guo Y.B., Liu, Z.Q., Energy consumption and modeling in precision hard milling, J. Clean. Prod., 135, 1591-1601, 2016.
  • Özturk B., Kara F., Calculation and estimation of surface roughness and energy consumption in milling of 6061 alloy, Adv. Mater. Sci. Eng., 8, 1-12, 2020.
  • Boothroyd G., Knight W.A., Fundamentals of Machining and Machine Tools 3rd ed., Taylor&Francis, 2005.
  • Balázs B.Z., Jacsó Á., Takács M., Micromachining of hardened hot-work tool steel: effects of milling strategies, Int. J. Adv. Manuf. Technol., 108 (9), 2839-2854, 2020.
  • Pa N.M.N., Sarhan A.A.D., Shukor M.H.A., Mohamed M.A.H., Investigate the lubrication effects on cutting force and power consumption in up and down end milling, In Adv. Mat. Res., Trans Tech Publications Ltd., 748, 264-268, 2013.
  • Zhu Z., Peng, F., Tang X., Yan R., Li Z., Chen C., Sun H., Specific cutting energy index (SCEI)-based process signature for high-performance milling of hardened steel, Int. J. Adv. Manuf. Technol., 103 (1), 1-13, 2019.
  • Wang G., Liu Z., Huang W., Wang B., Niu J., Influence of cutting parameters on surface roughness and strain hardening during milling NiTi shape memory alloy, Int. J. Adv. Manuf. Technol., 102 (5), 2211-2221, 2019.
  • Michalik P., Zajac J., Hatala M., Mital D., Fecova V., Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling, Measurement, 58, 416-428, 2014.
  • Akkurt M., Talaş kaldırma yöntemleri ve takım tezgahları, Birsen Yayınevi, 1991.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hacı Bekir Özerkan 0000-0002-7214-9985

Ferah Sucularlı This is me 0000-0002-5839-2356

Asim Genç 0000-0002-1900-1009

Publication Date February 28, 2022
Submission Date June 5, 2021
Acceptance Date November 26, 2021
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Özerkan, H. B., Sucularlı, F., & Genç, A. (2022). AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 2057-2066. https://doi.org/10.17341/gazimmfd.948426
AMA Özerkan HB, Sucularlı F, Genç A. AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi. GUMMFD. February 2022;37(4):2057-2066. doi:10.17341/gazimmfd.948426
Chicago Özerkan, Hacı Bekir, Ferah Sucularlı, and Asim Genç. “AISI 8740 çeliğinin Frezelenmesinde Kesme gücü, özgül Kesme Enerjisi Ve yüzey pürüzlülüğü Karakteristiklerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 4 (February 2022): 2057-66. https://doi.org/10.17341/gazimmfd.948426.
EndNote Özerkan HB, Sucularlı F, Genç A (February 1, 2022) AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 2057–2066.
IEEE H. B. Özerkan, F. Sucularlı, and A. Genç, “AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi”, GUMMFD, vol. 37, no. 4, pp. 2057–2066, 2022, doi: 10.17341/gazimmfd.948426.
ISNAD Özerkan, Hacı Bekir et al. “AISI 8740 çeliğinin Frezelenmesinde Kesme gücü, özgül Kesme Enerjisi Ve yüzey pürüzlülüğü Karakteristiklerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (February 2022), 2057-2066. https://doi.org/10.17341/gazimmfd.948426.
JAMA Özerkan HB, Sucularlı F, Genç A. AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi. GUMMFD. 2022;37:2057–2066.
MLA Özerkan, Hacı Bekir et al. “AISI 8740 çeliğinin Frezelenmesinde Kesme gücü, özgül Kesme Enerjisi Ve yüzey pürüzlülüğü Karakteristiklerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 4, 2022, pp. 2057-66, doi:10.17341/gazimmfd.948426.
Vancouver Özerkan HB, Sucularlı F, Genç A. AISI 8740 çeliğinin frezelenmesinde kesme gücü, özgül kesme enerjisi ve yüzey pürüzlülüğü karakteristiklerinin belirlenmesi. GUMMFD. 2022;37(4):2057-66.