Research Article
BibTex RIS Cite

Hava temizleme cihazının performansının sayısal incelenmesi

Year 2022, Volume: 37 Issue: 4, 2077 - 2090, 28.02.2022
https://doi.org/10.17341/gazimmfd.951560

Abstract

Bu çalışmada içinde oturan insan olan bir odanın havasının temizlenmesinde kullanılan taşınabilir hava temizle cihazının performansı incelenmiştir. Cihazın temiz hava besleme menfezinden farklı üfleme açıları ve üfleme hızlarının cihazın temizleme performansına etkisi araştırılmıştır. Bu kapsamda temiz hava dağıtım oranı (CADR) ve hava yaşı parametreleri kullanılmıştır. Yapılan analizler ve hesaplamalar çerçevesinde temizlenmiş havanın farklı açı ve hızlarda üflenmesi cihaz performansını etkilediği tespit edilmiştir. Oda içerisinde ortalama hava yaşı üfleme hızı ile ters orantılı olduğu görülmüştür. Üfleme hızı arttıkça ortalama hava yaşında yarı yarıya azalma meydana gelmektedir. Temiz hava dağıtım oranı ve hava yaşı değerleri karşılaştırılarak en uygun üfleme hız ve açıları belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

218M604

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 218M604 no.lu proje kapsamında desteklenmiştir. Yazarlar desteğinden dolayı TÜBİTAK’a teşekkür eder.

References

  • N. E. Klepeis et al., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants, J. Expo. Sci. Environ. Epidemiol., vol. 11, no. 3, 231–252, Jul. 2001.
  • S. R. Ardkapan, A. Afshari, N. C. Bergsøe, and P. V. Nielsen, Evaluation of air cleaning technologies existing in the Danish market: Experiments in a duct and in a test room, Indoor Built Environ., vol. 23, no. 8, 1177–1186, 2014.
  • S.-J. Cao and J. Meyers, Fast prediction of indoor pollutant dispersion based on reduced-order ventilation models, Build. Simul., vol. 8, no. 4, 415–420, 2015.
  • Y. Chen, A. Ebenstein, M. Greenstone, and H. Li, Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy, Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 32, 12936–12941, 2013.
  • D. W. Dockery et al., An Association between Air Pollution and Mortality in Six U.S. Cities, N. Engl. J. Med., vol. 329, no. 24, 1753–1759, 1993.
  • C. Chen, B. Zhao, W. Cui, L. Dong, N. An, and X. Ouyang, The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics, J. R. Soc. Interface, vol. 7, no. 48, 1105–1118, 2010.
  • EPA, Healthy Buildings, Healthy People, a Vision for the 21st Century; U.S. Environmental Protection Agency: Washington, DC, USA., 2001.
  • W. B. Faulkner, F. Memarzadeh, G. Riskowski, A. Kalbasi, and A. Ching-Zu Chang, Effects of air exchange rate, particle size and injection place on particle concentrations within a reduced-scale room, Build. Environ., vol. 92, 246–255, 2015.
  • F. Memarzadeh and W. Xu, Role of air changes per hour (ACH) in possible transmission of airborne infections, Build. Simul., vol. 5, no. 1, 15–28, 2012.
  • L. Chen, X. Jin, L. Yang, X. Du, and Y. Yang, Particle transport characteristics in indoor environment with an air cleaner: The effect of nonuniform particle distributions, Build. Simul., vol. 10, no. 1, 123–133, 2017.
  • S. Y. Kang, J. Siegel, and A. Novoselac, Effective positioning of portable air cleaning devices in multizone residential buildings, 11th International Conference on Indoor Air Quality and Climate, Copenhagen-Denmark, 17-22 August, 2008.
  • F. Moradi Kashkooli, M. Soltani, B. Zargar, M. K. Ijaz, E. Taatizadeh, and S. A. Sattar, Analysis of an indoor air decontamination device inside an aerobiology chamber: a numerical-experimental study, Air Qual. Atmos. Heal., vol. 13, no. 3, 281–288, 2020.
  • T. Zhang, S. Wang, G. Sun, L. Xu, and D. Takaoka, Flow impact of an air conditioner to portable air cleaning, Build. Environ., vol. 45, no. 9, 2047–2056, 2010.
  • X. Jin, L. Yang, X. Du, and Y. Yang, Particle transport characteristics in indoor environment with an air cleaner, Indoor Built Environ., vol. 25, no. 6, 987–996, 2016.
  • M. Küpper, C. Asbach, U. Schneiderwind, H. Finger, D. Spiegelhoff, and S. Schumacher, Testing of an indoor air cleaner for particulate pollutants under realistic conditions in an office room, Aerosol Air Qual. Res., vol. 19, no. 8, 1655–1665, 2019.
  • P. R. Nelson, S. B. Sears, and D. L. Heavner, Application of Methods for Evaluating Air Cleaner Performance, Indoor Environ., vol. 2, no. 2, 111–117, 1993.
  • AHAM, Method for Measuring the Performance of Portable Household Electric Room Air Cleaners, 1–4, 2006.
  • ASHRAE, ASHRAE Handbook-Fundamentals: Chapter 27 ventilation and infiltration., 2005.
  • G. Cao et al., A review of the performance of different ventilation and airflow distribution systems in buildings, Build. Environ., vol. 73, 171–186, 2014.
  • G. Sevilgen and M. Kilic, Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators, Energy Build., vol. 43, no. 1, 137–146, 2011.
  • M. Kilic and G. Sevilgen, Modelling airflow, heat transfer and moisture transport around a standing human body by computational fluid dynamics, Int. Commun. Heat Mass Transf., vol. 35, no. 9, 1159–1164, 2008.
  • G. Sevilgen and M. Kilic, Transient numerical analysis of airflow and heat transfer in a vehicle cabin during heating period, Int. J. Veh. Des., vol. 52, no. 1–4, 144–159, 2010.
  • G. Sevilgen and M. Kilic, Investigation of transient cooling of an automobile cabin with a virtual manikin under solar radiation, Therm. Sci., vol. 17, no. 2, 397–406, 2013.
  • G. Sevilgen and M. Kilic, Three dimensional numerical analysis of temperature distribution in an automobile cabin, Therm. Sci., vol. 16, no. 1, 321–326, 2012.
  • D. Choudhury, Introduction to the Renormalization Group Method and Turbulance Modelling, Fluent Inc, Tech. Memo. TM 107, 1993.
  • K.-C. Noh and M.-D. Oh, Variation of clean air delivery rate and effective air cleaning ratio of room air cleaning devices, Build. Environ., vol. 84, 44–49, 2015.
  • X. Li, X. Wang, X. Li, and Y. Li, Investigation on the relationship between flow pattern and air age, Sixth International IBPSA Conference, Kyoto, Japan., 13-15 September, 1999.
  • O. Kaynakli and M. Kilic, Investigation of indoor thermal comfort under transient conditions, Build. Environ., vol. 40, no. 2, 165–174, 2005.

Numerical investigation of an air cleaning device performance

Year 2022, Volume: 37 Issue: 4, 2077 - 2090, 28.02.2022
https://doi.org/10.17341/gazimmfd.951560

Abstract

In this study, a portable air cleaner's performance for cleaning a room air with a person sitting in it was investigated. The effect of different blowing angles and air velocities from the device fresh air supply vent on the cleaning performance of the device was studied. In this context, clean air delivery rate (CADR) and air age parameters were used. It has been determined that suppling the cleaned air at different angles and velocities affects the device's performance according to results from analysis and calculations. It has been observed that the mean air age in the room is inversely proportional to the supply air velocity. As the supply air velocity increases, the mean air age decreases by half. The most suitable air supply velocity and angles were determined by comparing the CADR and air age values.

Project Number

218M604

References

  • N. E. Klepeis et al., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants, J. Expo. Sci. Environ. Epidemiol., vol. 11, no. 3, 231–252, Jul. 2001.
  • S. R. Ardkapan, A. Afshari, N. C. Bergsøe, and P. V. Nielsen, Evaluation of air cleaning technologies existing in the Danish market: Experiments in a duct and in a test room, Indoor Built Environ., vol. 23, no. 8, 1177–1186, 2014.
  • S.-J. Cao and J. Meyers, Fast prediction of indoor pollutant dispersion based on reduced-order ventilation models, Build. Simul., vol. 8, no. 4, 415–420, 2015.
  • Y. Chen, A. Ebenstein, M. Greenstone, and H. Li, Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy, Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 32, 12936–12941, 2013.
  • D. W. Dockery et al., An Association between Air Pollution and Mortality in Six U.S. Cities, N. Engl. J. Med., vol. 329, no. 24, 1753–1759, 1993.
  • C. Chen, B. Zhao, W. Cui, L. Dong, N. An, and X. Ouyang, The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics, J. R. Soc. Interface, vol. 7, no. 48, 1105–1118, 2010.
  • EPA, Healthy Buildings, Healthy People, a Vision for the 21st Century; U.S. Environmental Protection Agency: Washington, DC, USA., 2001.
  • W. B. Faulkner, F. Memarzadeh, G. Riskowski, A. Kalbasi, and A. Ching-Zu Chang, Effects of air exchange rate, particle size and injection place on particle concentrations within a reduced-scale room, Build. Environ., vol. 92, 246–255, 2015.
  • F. Memarzadeh and W. Xu, Role of air changes per hour (ACH) in possible transmission of airborne infections, Build. Simul., vol. 5, no. 1, 15–28, 2012.
  • L. Chen, X. Jin, L. Yang, X. Du, and Y. Yang, Particle transport characteristics in indoor environment with an air cleaner: The effect of nonuniform particle distributions, Build. Simul., vol. 10, no. 1, 123–133, 2017.
  • S. Y. Kang, J. Siegel, and A. Novoselac, Effective positioning of portable air cleaning devices in multizone residential buildings, 11th International Conference on Indoor Air Quality and Climate, Copenhagen-Denmark, 17-22 August, 2008.
  • F. Moradi Kashkooli, M. Soltani, B. Zargar, M. K. Ijaz, E. Taatizadeh, and S. A. Sattar, Analysis of an indoor air decontamination device inside an aerobiology chamber: a numerical-experimental study, Air Qual. Atmos. Heal., vol. 13, no. 3, 281–288, 2020.
  • T. Zhang, S. Wang, G. Sun, L. Xu, and D. Takaoka, Flow impact of an air conditioner to portable air cleaning, Build. Environ., vol. 45, no. 9, 2047–2056, 2010.
  • X. Jin, L. Yang, X. Du, and Y. Yang, Particle transport characteristics in indoor environment with an air cleaner, Indoor Built Environ., vol. 25, no. 6, 987–996, 2016.
  • M. Küpper, C. Asbach, U. Schneiderwind, H. Finger, D. Spiegelhoff, and S. Schumacher, Testing of an indoor air cleaner for particulate pollutants under realistic conditions in an office room, Aerosol Air Qual. Res., vol. 19, no. 8, 1655–1665, 2019.
  • P. R. Nelson, S. B. Sears, and D. L. Heavner, Application of Methods for Evaluating Air Cleaner Performance, Indoor Environ., vol. 2, no. 2, 111–117, 1993.
  • AHAM, Method for Measuring the Performance of Portable Household Electric Room Air Cleaners, 1–4, 2006.
  • ASHRAE, ASHRAE Handbook-Fundamentals: Chapter 27 ventilation and infiltration., 2005.
  • G. Cao et al., A review of the performance of different ventilation and airflow distribution systems in buildings, Build. Environ., vol. 73, 171–186, 2014.
  • G. Sevilgen and M. Kilic, Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators, Energy Build., vol. 43, no. 1, 137–146, 2011.
  • M. Kilic and G. Sevilgen, Modelling airflow, heat transfer and moisture transport around a standing human body by computational fluid dynamics, Int. Commun. Heat Mass Transf., vol. 35, no. 9, 1159–1164, 2008.
  • G. Sevilgen and M. Kilic, Transient numerical analysis of airflow and heat transfer in a vehicle cabin during heating period, Int. J. Veh. Des., vol. 52, no. 1–4, 144–159, 2010.
  • G. Sevilgen and M. Kilic, Investigation of transient cooling of an automobile cabin with a virtual manikin under solar radiation, Therm. Sci., vol. 17, no. 2, 397–406, 2013.
  • G. Sevilgen and M. Kilic, Three dimensional numerical analysis of temperature distribution in an automobile cabin, Therm. Sci., vol. 16, no. 1, 321–326, 2012.
  • D. Choudhury, Introduction to the Renormalization Group Method and Turbulance Modelling, Fluent Inc, Tech. Memo. TM 107, 1993.
  • K.-C. Noh and M.-D. Oh, Variation of clean air delivery rate and effective air cleaning ratio of room air cleaning devices, Build. Environ., vol. 84, 44–49, 2015.
  • X. Li, X. Wang, X. Li, and Y. Li, Investigation on the relationship between flow pattern and air age, Sixth International IBPSA Conference, Kyoto, Japan., 13-15 September, 1999.
  • O. Kaynakli and M. Kilic, Investigation of indoor thermal comfort under transient conditions, Build. Environ., vol. 40, no. 2, 165–174, 2005.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Muhsin Kılıç 0000-0003-2113-4510

Mustafa Mutlu 0000-0001-6816-8377

İsmail Hakkı Saldamlı 0000-0003-3301-2262

Project Number 218M604
Publication Date February 28, 2022
Submission Date June 13, 2021
Acceptance Date November 26, 2021
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Kılıç, M., Mutlu, M., & Saldamlı, İ. H. (2022). Hava temizleme cihazının performansının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 2077-2090. https://doi.org/10.17341/gazimmfd.951560
AMA Kılıç M, Mutlu M, Saldamlı İH. Hava temizleme cihazının performansının sayısal incelenmesi. GUMMFD. February 2022;37(4):2077-2090. doi:10.17341/gazimmfd.951560
Chicago Kılıç, Muhsin, Mustafa Mutlu, and İsmail Hakkı Saldamlı. “Hava Temizleme cihazının performansının sayısal Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 4 (February 2022): 2077-90. https://doi.org/10.17341/gazimmfd.951560.
EndNote Kılıç M, Mutlu M, Saldamlı İH (February 1, 2022) Hava temizleme cihazının performansının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 2077–2090.
IEEE M. Kılıç, M. Mutlu, and İ. H. Saldamlı, “Hava temizleme cihazının performansının sayısal incelenmesi”, GUMMFD, vol. 37, no. 4, pp. 2077–2090, 2022, doi: 10.17341/gazimmfd.951560.
ISNAD Kılıç, Muhsin et al. “Hava Temizleme cihazının performansının sayısal Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (February 2022), 2077-2090. https://doi.org/10.17341/gazimmfd.951560.
JAMA Kılıç M, Mutlu M, Saldamlı İH. Hava temizleme cihazının performansının sayısal incelenmesi. GUMMFD. 2022;37:2077–2090.
MLA Kılıç, Muhsin et al. “Hava Temizleme cihazının performansının sayısal Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 4, 2022, pp. 2077-90, doi:10.17341/gazimmfd.951560.
Vancouver Kılıç M, Mutlu M, Saldamlı İH. Hava temizleme cihazının performansının sayısal incelenmesi. GUMMFD. 2022;37(4):2077-90.