Metanın kuru reformlanma reaksiyonunda karbon oluşumunu azaltan Zr-SBA-15 destekli Ni katalizörlerin geliştirilmesi: Sentez ortamının etkisi
Yıl 2023,
Cilt: 38 Sayı: 1, 71 - 84, 21.06.2022
Çiğdem Okutan
Hüseyin Arbağ
,
Nail Yaşyerli
,
Sena Yaşyerli
Öz
Metanın kuru reformlanması ile sentez gazı üretimi için karbon oluşumunu azaltabilecek Zr içerikli SBA-15 destekli Ni katalizörlerin geliştirilmesi amaçlanmıştır. Bu çalışmada, Zr içerikli SBA-15 destek malzemeleri HCl (A), NaCl (S) ve HCl ile NaCl’ün (B) birlikte ilave edildiği farklı koşullardaki tek-kap hidrotermal sentez yöntemiyle hazırlanmıştır. Zr-SBA-15 malzemelerinin destek olarak kullanıldığı Ni katalizörleri emdirme yöntemi ile hazırlanmıştır. Farklı sentez koşullarında hazırlanan Zr-SBA-15 destekli Ni katalizörlerinin aktiviteleri metanın kuru reformlanma reaksiyonunda sabit yatak reaktör sisteminde 750 °C’de test edilmiştir. Katalitik aktivite ve katalizör özellikleri arasındaki ilişkinin açıklanabilmesi amacıyla reaksiyon öncesi ve/veya sonrası XRD, N2 adsorpsiyon-desorpsiyon, ICP-OES, DRIFTS, SEM, TEM ve TG analizleri gerçekleştirilmiştir. HCl varlığında sentezlenen Zr-SBA-15 destekli Ni (5Ni@10Zr ̶ A) katalizörde diğer iki katalizörden (5Ni@10Zr ̶ B ve 5Ni@10Zr ̶ S) farklı olarak kısa ve hekzagonal şeklinde yapıların oluşumu gözlenmiştir. Farklı morfolojiye sahip olan 5Ni@10Zr ̶ A katalizörünün yapısında bulunan kütlece % 4,5 Zr miktarının katalizörün aktivitesini artırdığı (%85 CH4 ve %88 CO2 dönüşümü) ve karbon birikimini önemli derecede azalttığı belirlenmiştir. Bunun yanı sıra en yüksek H2/CO oranı ve H2 verimi sırasıyla 0,79 ve 1,37 olarak 5Ni@10Zr ̶ A katalizörü ile elde edilmiştir.
Destekleyen Kurum
Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Proje No: 06/2018-16)
Proje Numarası
(Proje No: 06/2018-16)
Teşekkür
Bu çalışma, Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi (BAP) tarafından (Proje No:
06/2018-16) desteklenmiştir.
Kaynakça
- 1. Mustu H., Yasyerli S., Yasyerli N., Dogu G., Dogu T., Djinović P., Pintar A., Effect of synthesis route of mesoporous zirconia based Ni catalysts on coke minimization in conversion of biogas to synthesis gas, Int. J. Hydrogen Energy., 40, 3217–3228, 2015.
- 2. Durán P., Sanz-Martínez A., Soler J., Menéndez M., Herguido J., Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes, Chem. Eng. J., 370, 772–781, 2019.
- 3. Izquierdo-Colorado, A., Dębek, R., Da Costa, P., Gálvez, M. E., Excess-methane dry and oxidative reforming on Ni-containing hydrotalcite-derived catalysts for biogas upgrading into synthesis gas, Int. J. Hydrogen Energy., 43, 11981–11989, 2018.
- 4. Abdulrasheed A., Jalil A. A., Gambo Y., Ibrahim M., Hambali H. U., Shahul Hamid M. Y., A review on catalyst development for dry reforming of methane to syngas: Recent advances, Renew. Sustain. Energy Rev., 108, 175–193, 2019.
- 5. Arbağ H., Yaşyerli S., Yaşyerli N., Doğu G., Doğu T., Effect of reduction and reaction temperature on activities of mesoporous alumina supported nickel catalysts and coke formation in dry reforming of methane, J. Fac. Eng. Archit. Gazi Univ., 33, 63–73, 2018.
- 6. Cai W. J., Qian L. P., Yue B., He H. Y., Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane, Chinese Chem. Lett., 25, 1411–1415, 2014.
- 7. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Dogu T., Osojnik ɤrnivec I. G., Pintar A., Coke minimization during conversion of biogas to syngas by bimetallic tungsten-nickel incorporated mesoporous alumina synthesized by the one-pot route, Ind. Eng. Chem. Res., 54, 2290–2301, 2015.
- 8. El Hassan N., Kaydouh M. N., Geagea H., El Zein H., Jabbour K., Casale S., El Zakhem H., Massiani, P., Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15, Appl. Catal. A Gen., 520, 114–121, 2016.
- 9. Wang F., Xu L., Yang J., Zhang J., Zhang L., Li H., Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction, Catal. Today., 281, 295–303, 2017.
- 10. Chein R. Y., Fung W. Y., Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts, Int. J. Hydrogen Energy., 44, 14303–14315, 2019.
- 11. Gao Y., Jiang J., Meng Y., Aihemaiti A., Ju T., Chen X., Yan F., A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming, Renew. Energy., 149, 786–793, 2020.
- 12. Rosset M., Féris L. A., Perez-Lopez O. W., Biogas dry reforming over Ni-Al catalyst: Suppression of carbon deposition by catalyst preparation and activation, Int. J. Hydrogen Energy., 45, 6549–6562, 2020.
- 13. Serrano-Lotina A., Rodríguez L., Muñoz G., Daza L., Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors, J. Power Sources., 196, 4404–4410, 2011.
- 14. Gao N., Cheng M., Quan C., Zheng Y., Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst, Fuel., 273, 117702, 2020.
- 15. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane, Int. J. Hydrogen Energy., 35, 2296–2304, 2010.
- 16. Yasyerli S., Filizgok S., Arbag H., Yasyerli N., Dogu G., Ru incorporated Ni-MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature, Int. J. Hydrogen Energy., 36, 4863–4874, 2011.
- 17. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Dogu T., Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas, Appl. Catal. B Environ., 198, 254–265, 2016.
- 18. Zhang M., Zhang J., Wu Y., Pan J., Zhang Q., Tan Y., Han Y., Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide, Appl. Catal. B Environ., 244, 427–437, 2019.
- 19. Zhang Q., Tang T., Wang J., Sun M., Wang H., Sun H., Ning P., Facile template-free synthesis of Ni-SiO2 catalyst with excellent sintering- and coking-resistance for dry reforming of methane, Catal. Commun., 131, 105782, 2019.
- 20. Arbag H., Yasyerli S., Yasyerli N., Dogu T., Dogu G., Coke minimization in dry reforming of methane by ni based mesoporous alumina catalysts synthesized following different routes: Effects of W and Mg, Top. Catal., 56, 1695–1707, 2013.
- 21. Pirez C., Morin J. C., Manayil J. C., Lee A. F., Wilson K., Sol-gel synthesis of SBA-15: Impact of HCl on surface chemistry, Microporous Mesoporous Mater., 271, 196–202, 2018.
- 22. Aktas O., Yasyerli S., Dogu G., Dogu T., Structural variations of MCF and SBA-15-like mesoporous materials as a result of differences in synthesis solution pH, Mater. Chem. Phys., 131, 151–159, 2011.
- 23. Chen, S. Y., Jang L. Y., Cheng S., Synthesis of Zr-incorporated SBA-15 mesoporous materials in a self-generated acidic environment, Chem. Mater., 16, 4174–4180, 2004.
- 24. Li C., Wang Y., Guo Y., Liu X., Guo Y., Zhang Z., Wang Y., Lu G., Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride, Chem. Mater., 19, 173–178, 2007.
- 25. Aktas O., Yasyerli S., Dogu G., Dogu T., Effect of synthesis conditions on the structure and catalytic performance of V- and Ce-incorporated SBA-15-like materials in propane selective oxidation, Ind. Eng. Chem. Res., 49, 6790–6802, 2010.
- 26. Cakiryilmaz N., Arbag H., Oktar N., Dogu G., Dogu T., Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst, Int. J. Hydrogen Energy., 43, 3629–3642, 2018.
- 27. Erdogan B., Arbag H., Yasyerli N., SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane, Int. J. Hydrogen Energy., 43, 1396–1405, 2018.
- 28. Chen S. Y., Tang C. Y., Chuang W. T., Lee J. J., Tsai Y. L., Chan J. C., Lin C. Y., Liu Y. C., Cheng S., A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels, Chem. Mater., 20, 3906–3916, 2008.
- 29. Dai L., Zhao Q., Fang M., Liu R., Dong M., Jiang T., Catalytic activity comparison of Zr-SBA-15 immobilized by a Brønsted-Lewis acidic ionic liquid in different esterifications, RSC Adv., 7, 32427–32435, 2017.
- 30. Okutan C., Arbag H., Yasyerli N., Yasyerli S., Catalytic activity of SBA-15 supported Ni catalyst in CH4 dry reforming: Effect of Al, Zr, and Ti co-impregnation and Al incorporation to SBA-15, Int. J. Hydrogen Energy., 2020.
- 31. Bağ E., Zirconium oxychloride octahydrate containing hydrogen-bonded polymer multilayer films, Master Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2014.
- 32. Clearfield A., Vaughan P. A.. The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate, ActaCryst., 9, 555–558, 1956.
- 33. Muha J.M., Vaughan P.A., Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides, J. Chem. Phys., 33, 194-199, 1960.
- 34. Rijnten H. T., Zirconia, Ph.D Thesis, Technische Hogeschool Delft, 1971.
- 35. Fuxiang L., Feng Y., Yongli L., Ruifeng L., Kechang X., Direct synthesis of Zr-SBA-15 mesoporous molecular sieves with high zirconium loading: Characterization and catalytic performance after sulfated, Microporous Mesoporous Mater., 101, 250–255, 2007.
- 36. Wang N., Yu X., Shen K., Chu W., Qian W., Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen, Int. J. Hydrogen Energy., 38, 9718–9731, 2013.
- 37. Thunyaratchatanon C., Luengnaruemitchai A., Chaisuwan T., Chollacoop N., Chen S. Y., Yoshimura Y., Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption, Microporous Mesoporous Mater., 253, 18–28, 2017.
- 38. Wisniewska J., Grzelak K., Huang S. P., Sobczak I., Yang C. M., Ziolek M., The influence of Zr presence in short channel SBA-15 on state and activity of metallic modifiers (Ag, Au, Cu, Fe), Catal. Today., 2019.
- 39. Klimova T., Reyes J., Gutiérrez O., Lizama L., Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: Effect of support Si/Al ratio, Appl. Catal. A Gen., 335, 159–171, 2008.
- 40. Kilos B., Aouine M., Nowak I., Ziolek M., Volta J. C., The role of niobium in the gas- and liquid-phase oxidation on metallosilicate MCM-41-type materials, J. Catal., 224, 314–325, 2004.
- 41. Chem J. M., Chen S., Huang C., Yokoi T., Tang C., Huang S., Lee J., Synthesis and catalytic activity of amino-functionalized SBA-15 materials with controllable channel lengths and amino loadings, J. Mater. Chem., 22, 2233–2243, 2012.
- 42. Arbag H., Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane, Int. J. Hydrogen Energy., 43, 6561–6574, 2018.