Research Article
BibTex RIS Cite

Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması

Year 2023, Volume: 38 Issue: 1, 283 - 298, 21.06.2022
https://doi.org/10.17341/gazimmfd.976527

Abstract

Bu çalışmada, doğal atık malzemelerden (balık kılçığı ve yumurta kabuğu) hidroksiapatitler (BKHAp ve YKHAp) başarıyla sentezlenmiş, fizikokimyasal özellikleri karakterize edilmiş ve BKHAp ve YKHAp partikülleri tarafından Cu(II) iyonu adsorpsiyonu farklı deneysel şartlar altında (pH, farklı adsorbent ve Cu(II) konsantrasyonu, temas süresi ve sıcaklık) Yanıt Yüzey Metodolojisi (YYM) kullanılarak optimize edilmiştir. Bu iki farklı atıktan üretilen HAp bazlı adsorbentlerin Cu(II) adsorpsiyon kapasiteleri karşılaştırılmıştır. Üretilen hidroksiapatit bazlı adsorbentlerin yüzey morfolojisi, kristal yapısı, elementel içerikleri ve boşluk oranları belirlenmiş ve her iki adsorbentin geleneksel hidroksiapatit partikül yapısı ile benzer yapıda olduğu görülmüştür. Adsorpsiyon mekanizmasını belirlemek için izoterm ve kinetik modelleri hesaplanmış ve sonuçlar BKHAp ve YKHAp partiküllerinin Cu(II) adsorpsiyon sürecinin Tempkin ve Scarthard izoterm modelleri ve yalancı ikinci derece kinetik model için daha uygun olduğunu göstermiştir. Cu(II) gideriminde optimum adsorpsiyon kapasitesi BKHAp ve YKHAp partikülleri için sırası ile 19,4 mg/g ve partikülleri için 10,6 mg/g olarak bulunmuştur (pH 5,5, 90 mgCu(II)/L, 2g/L adsorbent konsantrasyonu, 25 0C ve 25 min). Desorpsiyon ve rejenerasyon çalışmaları, adsorbentlerin ardışık üç döngüye kadar etkili bir şekilde kullanılabileceğini göstermiştir. Bu çalışmanın sonuçları, BKHAp ve YKHAp partiküllerinin sulu ortamlardan Cu(II) giderimi ve çevresel iyileştirmeler için sıfır atık yaklaşımı perspektifinde alternatif, çevre dostu, düşük maliyetli adsorbentler olarak kullanılabileceklerini ortaya koymuştur.

Supporting Institution

Mersin Üniversitesi

Project Number

2019-1-AP4-3494

Thanks

Bu çalışma Mersin Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2019-1-AP4-3494 nolu proje ile desteklenmiştir.

References

  • Qi, W., Zhao, Y., Zheng, X., Ji, M., Zhang, Z., Adsorption behavior and mechanism of Cr (VI) using Sakura waste from aqueous solution, Appl. Surf. Sci., 360, 470–476, 2016.
  • Lalita-Singh A.P., Sharma R.K., Synthesis and characterization of graft co-polymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions, Int. J. Biol. Macromol., 99, 409–426, 2017.
  • Feng Y., Yang S., Xia L., Wang Z., Suo N., Chen H., Long Y., Zhou B., Yu Y., In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater, J. Hazard. Mater., 364, 562–570, 2019.
  • Elkady M., Shokry H., Hamad H., Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for ground water treatment: adsorption mechanism of Fe (II) and Mn (II), RSC Adv. 6, 82244–82259, 2016.
  • Santhosh C., Velmurugan V., Jacob G., Jeong S.K., Grace A.N., Bhatnagar A., Role of nanomaterials in water treatment applications: a review, Chem. Eng. J., 306, 1116-1137, 2016.
  • Gao X.M., Zhang Y., Dai Y., Fu F., High-performance magnetic carbon materials in dye removal from aqueous solutions, J. Solid State Chem., 239, 265–273, 2016.
  • Ding C., Cheng W., Wang X., Wu Z.Y., Sun Y., Chen C., Wang X., Yu S.H., Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: a spectroscopic and modeling approach, J. Hazard. Mater., 313, 253–261, 2016.
  • Gan C., Liu Y., Tan X., Wang S., Zeng G., Zheng B., Li T., Jiang Z., Liu W., Effect of porous zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution, RSC Adv., 5, 35107–35115, 2015.
  • Saoiabi S., Gouza A., Bouyarmane H., Laghzizil A., Saoiabi A., Organophosphonate modified hydroxyapatites for Zn(II) and Pb(II) adsorption in relation of their structure and surface properties, J. Environ. Chem. Eng., 4, 428–433, 2016.
  • Kongsri S., Janpradit K., Buapa K., Techawongstien S., Chanthai S., Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution, Chem. Eng. J., 215-216, 522–532, 2013.
  • Akram M., Ahmed R., Shakir I., Aini W., Ibrahim W., Hussain R., Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci. 49 (4), 1461–1475, 2014.
  • Kim S.K., Mendis E., Bioactive compounds from marine processing by-products- a review, Food Res. Int., 39, 383-393, 2006.
  • FAO Aquaculture development, Use of wild fish as feed aquaculture, FAO Technical Guidelines for Responsible Fisheries, No. 5, Rome, 1-79, 2011.
  • Rustad T., Utilization of marine by-products, Electron. J. Environ. Agric. Food Chem., 2(4), 458−463, 2003.
  • Kizilkaya B., Tekinay A.A., Dilgin Y., Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones, Desalination, 264(1-2), 37-47, 2010.
  • Boutinguiza M., Pou J., Comesaña R., Lusquiños F., de Carlos A., León B., Biological hydroxyapatite obtained from fish bones, Mater Sci. Eng. C, 32, 470–86, 2012.
  • Sanosh K.P., Chu M.C., Balakrishnan A., Kim T.N., Cho S.J., Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders, Materials Letters, 63(24-25), 2100-2102, 2009.
  • Waheed M., Butt M.S., Shehzad A., Adzahan N.M., Shabbir M.A., Suleria H.A.R., Aadil R.M., Eggshell calcium: A cheap alternative to expensive supplements, Trends Food Sci. Technol., 91, 219-230, 2019.
  • Yang F., Zhang S., Sun Y., Cheng K., Li J., Tsang D.C., Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal, Bioresour. Technol., 265, 490-497, 2018.
  • Gardezi S.A., Joseph B., Performance Characteristics of eggshell Co/SiO2 Fischer–Tropsch catalysts: A modeling study, Ind. Eng. Chem. Res., 54(33), 8080-8092, 2015.
  • Geng J., Wu H., Al-Enizi A.M., Elzatahry A.A., Zheng G., Freestanding eggshell membrane based electrodes for high-performance supercapacitors and oxygen evolution reaction, Nanoscale, 7(34), 14378-14384, 2015.
  • Wang Y.Y., Liu Y.X., Lu H.H., Yang R.Q., Yang S.M., Competitive adsorption of Pb (II), Cu (II), and Zn (II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions, J. Solid State Chem., 261, 53-61, 2018.
  • Apalangya V., Rangari V., Jeelani S., Dankyi E., Yaya A., Darko S., Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles, Ceram. Int., 44(6), 7165-7171, 2018.
  • Zhang L., Zhang C., Zhang R., Jiang D., Zhu Q., Wang S., Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish, Mater. Lett., 236, 680-682, 2019.
  • Wijesinghe W.P.S.L., Mantilaka M.M.M.G.P.G., Premalal E.V.A., Herath H.M.T.U., Mahalingam S., Edirisinghe M., Rajapakse R.M.G., Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity, Mater. Sci. Eng. C, 42, 83-90, 2014.
  • Sossa P.A.F., Giraldo B.S., Garcia B.C.G., Parra E.R., Arango P.J.A., Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties, Matéria (Rio J.), 23(4), 2018.
  • Trakoolwannachai V., Kheolamai P., Ummartyotin S., Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material, Compos. Part B-Eng., 173, 106974, 2019.
  • Guo J., Han Y., Mao Y., Wickramaratne M.N., Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions, Colloids Surf. A Physicochem. Eng. Asp., 529, 801-807, 2017.
  • Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F., Hydroxyapatite crystal formation in the presence of polysaccharide, Cryst. Growth Des.,16, 1247–1255, 2016.
  • Mourabet M., El Rhilassi A., El Boujaady H., Bennani-Ziatni M., Taitai A., Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite, Arab. J. Chem., S3292-S3302, 2017.
  • Srivastava V., Sharma Y.C., Sillanpää M., Response surface methodological approach for the optimization of adsorption process in the removal of Cr (VI) ions by Cu2(OH)2CO3 nanoparticles, Appl. Surf. Sci., 326, 257-270, 2015.
  • Ma J., Xia M., Zhu S., Wang F., A new alendronate doped HAP nanomaterial for Pb2+, Cu2+ and Cd2+ effect absorption, J. Hazard. Mater., 400, 123143, 2020.
  • Davarnejad R., Panahi P., Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology, J. Ind. Eng. Chem., 33, 270–275, 2016.
  • Hass A., Lima I.M., Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar, Environ. Technol. Innov., 10, 16–26, 2018.
  • Bouhamed F., Elouear Z., Bouzid J., Ouddane B., Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones, Environ. Sci. Pollut. Res., 23, 15801–15806, 2016.
  • Kim B.S., Lee H.W., Park S.H., Baek K., Jeon J.K., Cho H.J., Jung S.C., Kim S.C., Park Y.K., Removal of Cu2+ by biochars derived from green macroalgae, Environ. Sci. Pollut. Res., 23, 985–994, 2016.
  • Wu Z.C., Wang Z.Z., Liu J., Yin J.H., Kuang S.P., A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu(II) ions, Int. J. Biol. Macromol., 81, 838–846, 2015.
  • Liu J., Yang X., Liu H., Cheng W., Bao Y., Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu (II) from aqueous solution, Colloids Surf. A Physicochem. Eng. Asp., 124960, 2020.
  • Nguyen T.M.T., Do T.P.T., Hoang T.S., Nguyen N.V., Pham H.D., Nguyen T.D., Pham T.N.M, Le T.S., Phum T.D., Adsorption of anionic surfactants onto alumina: Characteristics, mechanisms, and application for heavy metal removal, In. J. Polym. Sci., 2830286, 2018.
  • Huang Y., Chen L., Wang H., Removal of Co(II) from aqueous solution by using hydroxyapatite, J. Radioanal. Nucl. Chem., 291, 777–785, 2012.
  • Deepa C.N., Syed A.A., Suresha, S., Kinetic and isothermal studies on the removal of copper (II) from aqueous solution by Araucaria cookii: Response surface methodology for the optimization, Int. J. Recent Scientific Res., 5(4), 820–827, 2014.
  • Rao R.A.K., Khan U., Adsorption studies of Cu(II) on Boston fern (Nephrolepis exaltata Schott cv. Bostoniensis) leaves, Appl. Water Sci., 2016.
  • Mahdavi S., Jalali M., Afkhami A., Heavy metals removal from aqueoussolutions by Al2O3 nanoparticles modified with natural and chemical modifiers, Clean Technol. Environ. Policy, 17, 85–102, 2015.
  • Li Y., Yue Q., Gao B., Adsorption kinetics and desorption of Cu(II) and Zn(II)from aqueous solution onto humic acid, J. Hazard. Mater., 178, 455–461, 2010.
  • Bouhamed F., Elouear Z., Bouzid J., Ouddane B., Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones, Environ. Sci. Pollut. Res., 23, 15801–15806, 2016.
  • Zhang R., Zhou Y., Gu X., Lu J., Competitive adsorption of methylene blue and Cu2+ onto citric acid modified pine sawdust, Clean-Soil, Air, Water, 43 (1), 96–103, 2015.
  • Fan H., Zhou L., Jiang X., Huang Q., Lang W., Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite, Appl. Clay Sci., 95, 150–158, 2014.
  • Trakal L., Šigut R., Šillerová H., Faturíková D., Komárek M., Copper removal from aqueous solution using biochar: effect of chemical activation, Arab. J. Chem., 7, 43–52, 2014.
  • Meng J., Feng X., Dai Z., Liu X., Wu J., Xu J., Adsorption characteristics of Cu (II) from aqueous solution onto biochar derived from swine manure, Environ. Sci. Pollut. Res., 21, 7035–7046, 2014.
  • Gündüz F., Bayrak B., Biosorption of malachite green from an aqueous solution using pomegranate peel: Equilibrium modelling, kinetic and thermodynamic studies, Journal of Molecular Liquids, 243, 790-798, 2017.
  • Alouani M.E.L., Alehyen S., Achouri M.E.L., Taibi M., Removal of cationic dye-methylene blue-from aqueous solution by adsorption on fly ash-based geopolymer, J. Mater. Environ. Sci., 9(1), 32-46, 2018.
  • Hodaifa G., Alami S.B.D., Ochando-Pulido J.M., Víctor-Ortega M.D., Iron removal from liquid effluents by olive stones on adsorption column: breakthrough curves, Ecol. Eng., 73, 270-275, 2014.
Year 2023, Volume: 38 Issue: 1, 283 - 298, 21.06.2022
https://doi.org/10.17341/gazimmfd.976527

Abstract

Project Number

2019-1-AP4-3494

References

  • Qi, W., Zhao, Y., Zheng, X., Ji, M., Zhang, Z., Adsorption behavior and mechanism of Cr (VI) using Sakura waste from aqueous solution, Appl. Surf. Sci., 360, 470–476, 2016.
  • Lalita-Singh A.P., Sharma R.K., Synthesis and characterization of graft co-polymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions, Int. J. Biol. Macromol., 99, 409–426, 2017.
  • Feng Y., Yang S., Xia L., Wang Z., Suo N., Chen H., Long Y., Zhou B., Yu Y., In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater, J. Hazard. Mater., 364, 562–570, 2019.
  • Elkady M., Shokry H., Hamad H., Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for ground water treatment: adsorption mechanism of Fe (II) and Mn (II), RSC Adv. 6, 82244–82259, 2016.
  • Santhosh C., Velmurugan V., Jacob G., Jeong S.K., Grace A.N., Bhatnagar A., Role of nanomaterials in water treatment applications: a review, Chem. Eng. J., 306, 1116-1137, 2016.
  • Gao X.M., Zhang Y., Dai Y., Fu F., High-performance magnetic carbon materials in dye removal from aqueous solutions, J. Solid State Chem., 239, 265–273, 2016.
  • Ding C., Cheng W., Wang X., Wu Z.Y., Sun Y., Chen C., Wang X., Yu S.H., Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: a spectroscopic and modeling approach, J. Hazard. Mater., 313, 253–261, 2016.
  • Gan C., Liu Y., Tan X., Wang S., Zeng G., Zheng B., Li T., Jiang Z., Liu W., Effect of porous zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution, RSC Adv., 5, 35107–35115, 2015.
  • Saoiabi S., Gouza A., Bouyarmane H., Laghzizil A., Saoiabi A., Organophosphonate modified hydroxyapatites for Zn(II) and Pb(II) adsorption in relation of their structure and surface properties, J. Environ. Chem. Eng., 4, 428–433, 2016.
  • Kongsri S., Janpradit K., Buapa K., Techawongstien S., Chanthai S., Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution, Chem. Eng. J., 215-216, 522–532, 2013.
  • Akram M., Ahmed R., Shakir I., Aini W., Ibrahim W., Hussain R., Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci. 49 (4), 1461–1475, 2014.
  • Kim S.K., Mendis E., Bioactive compounds from marine processing by-products- a review, Food Res. Int., 39, 383-393, 2006.
  • FAO Aquaculture development, Use of wild fish as feed aquaculture, FAO Technical Guidelines for Responsible Fisheries, No. 5, Rome, 1-79, 2011.
  • Rustad T., Utilization of marine by-products, Electron. J. Environ. Agric. Food Chem., 2(4), 458−463, 2003.
  • Kizilkaya B., Tekinay A.A., Dilgin Y., Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones, Desalination, 264(1-2), 37-47, 2010.
  • Boutinguiza M., Pou J., Comesaña R., Lusquiños F., de Carlos A., León B., Biological hydroxyapatite obtained from fish bones, Mater Sci. Eng. C, 32, 470–86, 2012.
  • Sanosh K.P., Chu M.C., Balakrishnan A., Kim T.N., Cho S.J., Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders, Materials Letters, 63(24-25), 2100-2102, 2009.
  • Waheed M., Butt M.S., Shehzad A., Adzahan N.M., Shabbir M.A., Suleria H.A.R., Aadil R.M., Eggshell calcium: A cheap alternative to expensive supplements, Trends Food Sci. Technol., 91, 219-230, 2019.
  • Yang F., Zhang S., Sun Y., Cheng K., Li J., Tsang D.C., Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal, Bioresour. Technol., 265, 490-497, 2018.
  • Gardezi S.A., Joseph B., Performance Characteristics of eggshell Co/SiO2 Fischer–Tropsch catalysts: A modeling study, Ind. Eng. Chem. Res., 54(33), 8080-8092, 2015.
  • Geng J., Wu H., Al-Enizi A.M., Elzatahry A.A., Zheng G., Freestanding eggshell membrane based electrodes for high-performance supercapacitors and oxygen evolution reaction, Nanoscale, 7(34), 14378-14384, 2015.
  • Wang Y.Y., Liu Y.X., Lu H.H., Yang R.Q., Yang S.M., Competitive adsorption of Pb (II), Cu (II), and Zn (II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions, J. Solid State Chem., 261, 53-61, 2018.
  • Apalangya V., Rangari V., Jeelani S., Dankyi E., Yaya A., Darko S., Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles, Ceram. Int., 44(6), 7165-7171, 2018.
  • Zhang L., Zhang C., Zhang R., Jiang D., Zhu Q., Wang S., Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish, Mater. Lett., 236, 680-682, 2019.
  • Wijesinghe W.P.S.L., Mantilaka M.M.M.G.P.G., Premalal E.V.A., Herath H.M.T.U., Mahalingam S., Edirisinghe M., Rajapakse R.M.G., Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity, Mater. Sci. Eng. C, 42, 83-90, 2014.
  • Sossa P.A.F., Giraldo B.S., Garcia B.C.G., Parra E.R., Arango P.J.A., Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties, Matéria (Rio J.), 23(4), 2018.
  • Trakoolwannachai V., Kheolamai P., Ummartyotin S., Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material, Compos. Part B-Eng., 173, 106974, 2019.
  • Guo J., Han Y., Mao Y., Wickramaratne M.N., Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions, Colloids Surf. A Physicochem. Eng. Asp., 529, 801-807, 2017.
  • Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F., Hydroxyapatite crystal formation in the presence of polysaccharide, Cryst. Growth Des.,16, 1247–1255, 2016.
  • Mourabet M., El Rhilassi A., El Boujaady H., Bennani-Ziatni M., Taitai A., Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite, Arab. J. Chem., S3292-S3302, 2017.
  • Srivastava V., Sharma Y.C., Sillanpää M., Response surface methodological approach for the optimization of adsorption process in the removal of Cr (VI) ions by Cu2(OH)2CO3 nanoparticles, Appl. Surf. Sci., 326, 257-270, 2015.
  • Ma J., Xia M., Zhu S., Wang F., A new alendronate doped HAP nanomaterial for Pb2+, Cu2+ and Cd2+ effect absorption, J. Hazard. Mater., 400, 123143, 2020.
  • Davarnejad R., Panahi P., Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology, J. Ind. Eng. Chem., 33, 270–275, 2016.
  • Hass A., Lima I.M., Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar, Environ. Technol. Innov., 10, 16–26, 2018.
  • Bouhamed F., Elouear Z., Bouzid J., Ouddane B., Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones, Environ. Sci. Pollut. Res., 23, 15801–15806, 2016.
  • Kim B.S., Lee H.W., Park S.H., Baek K., Jeon J.K., Cho H.J., Jung S.C., Kim S.C., Park Y.K., Removal of Cu2+ by biochars derived from green macroalgae, Environ. Sci. Pollut. Res., 23, 985–994, 2016.
  • Wu Z.C., Wang Z.Z., Liu J., Yin J.H., Kuang S.P., A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu(II) ions, Int. J. Biol. Macromol., 81, 838–846, 2015.
  • Liu J., Yang X., Liu H., Cheng W., Bao Y., Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu (II) from aqueous solution, Colloids Surf. A Physicochem. Eng. Asp., 124960, 2020.
  • Nguyen T.M.T., Do T.P.T., Hoang T.S., Nguyen N.V., Pham H.D., Nguyen T.D., Pham T.N.M, Le T.S., Phum T.D., Adsorption of anionic surfactants onto alumina: Characteristics, mechanisms, and application for heavy metal removal, In. J. Polym. Sci., 2830286, 2018.
  • Huang Y., Chen L., Wang H., Removal of Co(II) from aqueous solution by using hydroxyapatite, J. Radioanal. Nucl. Chem., 291, 777–785, 2012.
  • Deepa C.N., Syed A.A., Suresha, S., Kinetic and isothermal studies on the removal of copper (II) from aqueous solution by Araucaria cookii: Response surface methodology for the optimization, Int. J. Recent Scientific Res., 5(4), 820–827, 2014.
  • Rao R.A.K., Khan U., Adsorption studies of Cu(II) on Boston fern (Nephrolepis exaltata Schott cv. Bostoniensis) leaves, Appl. Water Sci., 2016.
  • Mahdavi S., Jalali M., Afkhami A., Heavy metals removal from aqueoussolutions by Al2O3 nanoparticles modified with natural and chemical modifiers, Clean Technol. Environ. Policy, 17, 85–102, 2015.
  • Li Y., Yue Q., Gao B., Adsorption kinetics and desorption of Cu(II) and Zn(II)from aqueous solution onto humic acid, J. Hazard. Mater., 178, 455–461, 2010.
  • Bouhamed F., Elouear Z., Bouzid J., Ouddane B., Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones, Environ. Sci. Pollut. Res., 23, 15801–15806, 2016.
  • Zhang R., Zhou Y., Gu X., Lu J., Competitive adsorption of methylene blue and Cu2+ onto citric acid modified pine sawdust, Clean-Soil, Air, Water, 43 (1), 96–103, 2015.
  • Fan H., Zhou L., Jiang X., Huang Q., Lang W., Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite, Appl. Clay Sci., 95, 150–158, 2014.
  • Trakal L., Šigut R., Šillerová H., Faturíková D., Komárek M., Copper removal from aqueous solution using biochar: effect of chemical activation, Arab. J. Chem., 7, 43–52, 2014.
  • Meng J., Feng X., Dai Z., Liu X., Wu J., Xu J., Adsorption characteristics of Cu (II) from aqueous solution onto biochar derived from swine manure, Environ. Sci. Pollut. Res., 21, 7035–7046, 2014.
  • Gündüz F., Bayrak B., Biosorption of malachite green from an aqueous solution using pomegranate peel: Equilibrium modelling, kinetic and thermodynamic studies, Journal of Molecular Liquids, 243, 790-798, 2017.
  • Alouani M.E.L., Alehyen S., Achouri M.E.L., Taibi M., Removal of cationic dye-methylene blue-from aqueous solution by adsorption on fly ash-based geopolymer, J. Mater. Environ. Sci., 9(1), 32-46, 2018.
  • Hodaifa G., Alami S.B.D., Ochando-Pulido J.M., Víctor-Ortega M.D., Iron removal from liquid effluents by olive stones on adsorption column: breakthrough curves, Ecol. Eng., 73, 270-275, 2014.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Yağmur Uysal 0000-0002-7217-8217

Buşra Çiftci This is me 0000-0003-3674-0580

Project Number 2019-1-AP4-3494
Publication Date June 21, 2022
Submission Date August 2, 2021
Acceptance Date February 3, 2022
Published in Issue Year 2023 Volume: 38 Issue: 1

Cite

APA Uysal, Y., & Çiftci, B. (2022). Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 283-298. https://doi.org/10.17341/gazimmfd.976527
AMA Uysal Y, Çiftci B. Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması. GUMMFD. June 2022;38(1):283-298. doi:10.17341/gazimmfd.976527
Chicago Uysal, Yağmur, and Buşra Çiftci. “Balık kılçığı Ve Yumurta kabuğu atıklarından Sentezlenen Hidroksiapatit Adsorbentlerinin Sulu çözeltisinden Cu(II) iyonlarının Gideriminde kullanılabilirliğinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 1 (June 2022): 283-98. https://doi.org/10.17341/gazimmfd.976527.
EndNote Uysal Y, Çiftci B (June 1, 2022) Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 1 283–298.
IEEE Y. Uysal and B. Çiftci, “Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması”, GUMMFD, vol. 38, no. 1, pp. 283–298, 2022, doi: 10.17341/gazimmfd.976527.
ISNAD Uysal, Yağmur - Çiftci, Buşra. “Balık kılçığı Ve Yumurta kabuğu atıklarından Sentezlenen Hidroksiapatit Adsorbentlerinin Sulu çözeltisinden Cu(II) iyonlarının Gideriminde kullanılabilirliğinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/1 (June 2022), 283-298. https://doi.org/10.17341/gazimmfd.976527.
JAMA Uysal Y, Çiftci B. Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması. GUMMFD. 2022;38:283–298.
MLA Uysal, Yağmur and Buşra Çiftci. “Balık kılçığı Ve Yumurta kabuğu atıklarından Sentezlenen Hidroksiapatit Adsorbentlerinin Sulu çözeltisinden Cu(II) iyonlarının Gideriminde kullanılabilirliğinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 1, 2022, pp. 283-98, doi:10.17341/gazimmfd.976527.
Vancouver Uysal Y, Çiftci B. Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması. GUMMFD. 2022;38(1):283-98.