Research Article
BibTex RIS Cite

Doğrusal Fresnel kolektörün performans analizi

Year 2023, Volume: 38 Issue: 2, 1231 - 1246, 07.10.2022
https://doi.org/10.17341/gazimmfd.1048446

Abstract

Güneş enerjisini daha verimli kullanmak için büyük bir potansiyele sahip olan doğrusal Fresnel kolektörlerin tasarım sürecinde performanslarını en doğru şekilde analiz edebilmek için doğrulanmış bir simülasyon modeline ihtiyaç vardır. Bu amaçla Doğrusal Fresnel kolektörün ısı transfer kapasitesini daha iyi anlamak için Harran Üniversitesi GAPYENEV bünyesinde kurulu sisteme ait geometrik model ve optik değerler hem ANSYS Fluent hem de Tonatiuh kullanılarak simüle edilmiştir. Simülasyonlar sonucunda sistemin optik verimini ve alıcı içerisindeki soğurucu boru üzerine düşen ışınım dağılımı bulunarak karşılaştırılmıştır. Alıcıdan gerçekleşen ısı kayıpları bulunarak faydalı enerji miktarı hesaplanmıştır. Seçilen ısı transfer akışkanı için sabit debi ve giriş sıcaklığında simülasyonu yapılarak sistemin ısıl verimi bulunmuştur. Doğrusal Fresnel kolektörün deneysel verilerle elde edilen ısıl verimi 0.348 bulunurken ANSYS Fluent modeli ile hesaplanan ısıl verimi 0.3223 olarak bulunmuştur.

Supporting Institution

TÜBİTAK

Project Number

118M143

References

  • Gabriel Morin, Jürgen Dersch, Werner Platzer, Markus Eck, Andreas Häberle, Comparison of Linear Fresnel and Parabolic Trough Collector power plants, Solar Energy, Volume 86, Issue 1, 2012, Pages 1-12, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2011.06.020.
  • M.A. Moghimi, K.J. Craig, J.P. Meyer, A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method, Solar Energy, Volume 116, 2015, Pages 407-427, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2015.04.014.
  • G.S. Chaitanya Prasad, K.S. Reddy, T. Sundararajan, Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube, Solar Energy, Volume 150, 2017, Pages 1-12, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2017.04.026.
  • Julius Yellowhair, Jesus D. Ortega, Joshua M. Christian, and Clifford K. Ho "Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries", Proc. SPIE 9191, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XI, 91910M (16 September 2014); https://doi.org/10.1117/12.2062926
  • M. A. Moghimi, A. Rungasamy, K. J. Craig, J. P. Meyer, Introducing CFD in the optical simulation of linear Fresnel collectors, AIP Conference Proceedings 1734, 020015 (2016); https://doi.org/10.1063/1.4949039
  • Oscar A. López-Núñez, J. Arturo Alfaro-Ayala, O.A. Jaramillo, J.J. Ramírez-Minguela, J. Carlos Castro, Cesar E. Damian-Ascencio, Sergio Cano-Andrade, A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics, Renewable Energy, Volume 146, 2020, Pages 1083-1100, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.06.144.7
  • Facão, Jorge & Oliveira, Armando. (2010). Simulation of a linear Fresnel solar collector concentrator. International Journal of Low-carbon Technologies. 5. 125-129. 10.1093/ijlct/ctq011.
  • Sudhansu S. Sahoo, Shinu M. Varghese, C. Suresh Kumar, S.P. Viswanathan, Suneet Singh, Rangan Banerjee, Experimental investigation and computational validation of heat losses from the cavity receiver used in linear Fresnel reflector solar thermal system, Renewable Energy, Volume 55, 2013, Pages 18-23, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2012.11.036.
  • Lai, Yanhua & Wu, Tao & Che, Shuping & Dong, Zhen & Lyu, Mingxin. (2013). Thermal Performance Prediction of a Trapezoidal Cavity Absorber for a Linear Fresnel Reflector. Advances in Mechanical Engineering. 2013. 10.1155/2013/615742.
  • Reddy, Srinivas & Balaji, Shanmugapriya & Sundarajan, T. (2017). Heat Loss Prediction from Solar LFR Linear Evacuated Surface Receiver with Variable 2-STAGE Concentrated Flux. 1-8. 10.18086/swc.2017.31.15.
  • A. Heimsath, F. Cuevas, A. Hofer, P. Nitz, W.J. Platzer, Linear Fresnel Collector Receiver: Heat Loss and Temperatures, Energy Procedia, Volume 49, 2014, Pages 386-397, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2014.03.042.
  • R. Manikumar, A. Valan Arasu & S. Jayaraj (2014) Numerical Simulation of a Trapezoidal Cavity Absorber in the Linear Fresnel Reflector Solar Concentrator System, International Journal of Green Energy, 11:4, 344-363, DOI: 10.1080/15435075.2012.752375
  • Parikh, Abhishek & Martinek, Janna & Mungas, Greg & Kramer, Nick & Braun, Robert & Zhu, Guangdong. (2019). Investigation of temperature distribution on a new linear Fresnel receiver assembly under high solar flux. International Journal of Energy Research. 43. 10.1002/er.4374.
  • Parikh, Abhishek & Martinek, Janna & Mungas, Greg & Kramer, Nicholas & Zhu, Guangdong. (2018). Wind load analysis of a new linear Fresnel receiver assembly design. Journal of Renewable and Sustainable Energy. 10. 053703. 10.1063/1.5030533.
  • Ankit S. Gujrathi, Sachin P. Ingale, Sudhir U. Patil, Analysis of Parabolic Trough Collector using Ansys Fluent Software, IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882
  • Mathew, Sam & Visavale, Ganesh & Mali, Vijay. (2010). CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector. 10.13140/2.1.3247.4241.
  • Ramesh K. Donga1, Suresh Kumar, Computational Fluid Dynamics Analysis of Linear Solar Collector by using Semicircular Absorber Tube, ISSN (e): 2250 – 3005 || Volume, 08 || Issue,10 October – 2018 International Journal of Computational Engineering Research (IJCER)
  • Kuharat, S., & Bég, O.A. (2019). Computational fluid dynamics simulation of a nanofluid-based annular solar collector with different metallic nano-particles. Heat and Mass Transfer Research Journal Vol. 3, No. 1
  • Khandelwal, Deepak & Kandasamy, Ravi & Kaushik, Subhash. (2019). Heat transfer analysis of receiver for large aperture parabolic trough solar collector. International Journal of Energy Research. 43. 10.1002/er.4554.
  • Kajavali, A. & Sivaraman, B. & Narasingamurthi, Kulasekharan. (2014). Investigation of heat transfer enhancement in a parabolic trough collector with a modified absorber. International Energy Journal. 14. 177-188.
  • Zima, W.; Cebula, A.; Cisek, P. Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification. Energies 2020, 13, 4168. https://doi.org/10.3390/en13164168
  • Ajay, Ketan & Lal, Kundan. (2016). Performance Evaluation of Nanofluid (Al 2 O 3 /H 2 O-C 2 H 6 O2) Based Parabolic Solar Collector Using Both Experimental and CFD Techniques. International Journal of Engineering Science. 29. 572-580. 10.5829/idosi.ije.2016.29.04a.17.
  • Neelam Khandelwal, Meeta Sharma, Onkar Singh, Anoop Kumar Shukla, Comparative analysis of the linear Fresnel reflector assisted solar cycle on the basis of heat transfer fluids, Materials Today: Proceedings, Volume 38, Part 1, 2021, Pages 74-79, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.05.792.
  • Juergen H. Peterseim, Stuart White, Amir Tadros, Udo Hellwig, Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?, Renewable Energy, Volume 57, 2013, Pages 520-532, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2013.02.014.
  • Bellos, Evangelos & Tzivanidis, Christos & Papadopoulos, Angelos. (2018). Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering. 133. 10.1016/j.applthermaleng.2018.01.038.
  • https://material-properties.org/glass-wool-density-heat-capacity-thermal-conductivity/
  • Duffie, John A., and William A. Beckman. Solar Engineering of Thermal Processes. 4th ed. John Wiley & Sons, 2013.
  • Moghimi, M. A. & Craig, Kenneth & Meyer, Josua. (2015). Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy. 119. 343-361. 10.1016/j.solener.2015.07.009.
  • Erişim: 27 Aralık 2021, http://gapyenev.harran.edu.tr/
  • González-Mora, Eduardo & Duran, M.. (2020). Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation. Energies. 13. 355. 10.3390/en13020355.
  • A. Barbón, N. Barbón, L. Bayón, J.A. Otero, Optimization of the length and position of the absorber tube in small-scale Linear Fresnel Concentrators, Renewable Energy, Volume 99, 2016, Pages 986-995, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2016.07.070.
Year 2023, Volume: 38 Issue: 2, 1231 - 1246, 07.10.2022
https://doi.org/10.17341/gazimmfd.1048446

Abstract

Project Number

118M143

References

  • Gabriel Morin, Jürgen Dersch, Werner Platzer, Markus Eck, Andreas Häberle, Comparison of Linear Fresnel and Parabolic Trough Collector power plants, Solar Energy, Volume 86, Issue 1, 2012, Pages 1-12, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2011.06.020.
  • M.A. Moghimi, K.J. Craig, J.P. Meyer, A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method, Solar Energy, Volume 116, 2015, Pages 407-427, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2015.04.014.
  • G.S. Chaitanya Prasad, K.S. Reddy, T. Sundararajan, Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube, Solar Energy, Volume 150, 2017, Pages 1-12, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2017.04.026.
  • Julius Yellowhair, Jesus D. Ortega, Joshua M. Christian, and Clifford K. Ho "Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries", Proc. SPIE 9191, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XI, 91910M (16 September 2014); https://doi.org/10.1117/12.2062926
  • M. A. Moghimi, A. Rungasamy, K. J. Craig, J. P. Meyer, Introducing CFD in the optical simulation of linear Fresnel collectors, AIP Conference Proceedings 1734, 020015 (2016); https://doi.org/10.1063/1.4949039
  • Oscar A. López-Núñez, J. Arturo Alfaro-Ayala, O.A. Jaramillo, J.J. Ramírez-Minguela, J. Carlos Castro, Cesar E. Damian-Ascencio, Sergio Cano-Andrade, A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics, Renewable Energy, Volume 146, 2020, Pages 1083-1100, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.06.144.7
  • Facão, Jorge & Oliveira, Armando. (2010). Simulation of a linear Fresnel solar collector concentrator. International Journal of Low-carbon Technologies. 5. 125-129. 10.1093/ijlct/ctq011.
  • Sudhansu S. Sahoo, Shinu M. Varghese, C. Suresh Kumar, S.P. Viswanathan, Suneet Singh, Rangan Banerjee, Experimental investigation and computational validation of heat losses from the cavity receiver used in linear Fresnel reflector solar thermal system, Renewable Energy, Volume 55, 2013, Pages 18-23, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2012.11.036.
  • Lai, Yanhua & Wu, Tao & Che, Shuping & Dong, Zhen & Lyu, Mingxin. (2013). Thermal Performance Prediction of a Trapezoidal Cavity Absorber for a Linear Fresnel Reflector. Advances in Mechanical Engineering. 2013. 10.1155/2013/615742.
  • Reddy, Srinivas & Balaji, Shanmugapriya & Sundarajan, T. (2017). Heat Loss Prediction from Solar LFR Linear Evacuated Surface Receiver with Variable 2-STAGE Concentrated Flux. 1-8. 10.18086/swc.2017.31.15.
  • A. Heimsath, F. Cuevas, A. Hofer, P. Nitz, W.J. Platzer, Linear Fresnel Collector Receiver: Heat Loss and Temperatures, Energy Procedia, Volume 49, 2014, Pages 386-397, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2014.03.042.
  • R. Manikumar, A. Valan Arasu & S. Jayaraj (2014) Numerical Simulation of a Trapezoidal Cavity Absorber in the Linear Fresnel Reflector Solar Concentrator System, International Journal of Green Energy, 11:4, 344-363, DOI: 10.1080/15435075.2012.752375
  • Parikh, Abhishek & Martinek, Janna & Mungas, Greg & Kramer, Nick & Braun, Robert & Zhu, Guangdong. (2019). Investigation of temperature distribution on a new linear Fresnel receiver assembly under high solar flux. International Journal of Energy Research. 43. 10.1002/er.4374.
  • Parikh, Abhishek & Martinek, Janna & Mungas, Greg & Kramer, Nicholas & Zhu, Guangdong. (2018). Wind load analysis of a new linear Fresnel receiver assembly design. Journal of Renewable and Sustainable Energy. 10. 053703. 10.1063/1.5030533.
  • Ankit S. Gujrathi, Sachin P. Ingale, Sudhir U. Patil, Analysis of Parabolic Trough Collector using Ansys Fluent Software, IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882
  • Mathew, Sam & Visavale, Ganesh & Mali, Vijay. (2010). CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector. 10.13140/2.1.3247.4241.
  • Ramesh K. Donga1, Suresh Kumar, Computational Fluid Dynamics Analysis of Linear Solar Collector by using Semicircular Absorber Tube, ISSN (e): 2250 – 3005 || Volume, 08 || Issue,10 October – 2018 International Journal of Computational Engineering Research (IJCER)
  • Kuharat, S., & Bég, O.A. (2019). Computational fluid dynamics simulation of a nanofluid-based annular solar collector with different metallic nano-particles. Heat and Mass Transfer Research Journal Vol. 3, No. 1
  • Khandelwal, Deepak & Kandasamy, Ravi & Kaushik, Subhash. (2019). Heat transfer analysis of receiver for large aperture parabolic trough solar collector. International Journal of Energy Research. 43. 10.1002/er.4554.
  • Kajavali, A. & Sivaraman, B. & Narasingamurthi, Kulasekharan. (2014). Investigation of heat transfer enhancement in a parabolic trough collector with a modified absorber. International Energy Journal. 14. 177-188.
  • Zima, W.; Cebula, A.; Cisek, P. Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification. Energies 2020, 13, 4168. https://doi.org/10.3390/en13164168
  • Ajay, Ketan & Lal, Kundan. (2016). Performance Evaluation of Nanofluid (Al 2 O 3 /H 2 O-C 2 H 6 O2) Based Parabolic Solar Collector Using Both Experimental and CFD Techniques. International Journal of Engineering Science. 29. 572-580. 10.5829/idosi.ije.2016.29.04a.17.
  • Neelam Khandelwal, Meeta Sharma, Onkar Singh, Anoop Kumar Shukla, Comparative analysis of the linear Fresnel reflector assisted solar cycle on the basis of heat transfer fluids, Materials Today: Proceedings, Volume 38, Part 1, 2021, Pages 74-79, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.05.792.
  • Juergen H. Peterseim, Stuart White, Amir Tadros, Udo Hellwig, Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?, Renewable Energy, Volume 57, 2013, Pages 520-532, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2013.02.014.
  • Bellos, Evangelos & Tzivanidis, Christos & Papadopoulos, Angelos. (2018). Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering. 133. 10.1016/j.applthermaleng.2018.01.038.
  • https://material-properties.org/glass-wool-density-heat-capacity-thermal-conductivity/
  • Duffie, John A., and William A. Beckman. Solar Engineering of Thermal Processes. 4th ed. John Wiley & Sons, 2013.
  • Moghimi, M. A. & Craig, Kenneth & Meyer, Josua. (2015). Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy. 119. 343-361. 10.1016/j.solener.2015.07.009.
  • Erişim: 27 Aralık 2021, http://gapyenev.harran.edu.tr/
  • González-Mora, Eduardo & Duran, M.. (2020). Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation. Energies. 13. 355. 10.3390/en13020355.
  • A. Barbón, N. Barbón, L. Bayón, J.A. Otero, Optimization of the length and position of the absorber tube in small-scale Linear Fresnel Concentrators, Renewable Energy, Volume 99, 2016, Pages 986-995, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2016.07.070.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Erdal Yıldırım 0000-0002-9309-2420

Project Number 118M143
Publication Date October 7, 2022
Submission Date December 27, 2021
Acceptance Date May 26, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Yıldırım, E. (2022). Doğrusal Fresnel kolektörün performans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1231-1246. https://doi.org/10.17341/gazimmfd.1048446
AMA Yıldırım E. Doğrusal Fresnel kolektörün performans analizi. GUMMFD. October 2022;38(2):1231-1246. doi:10.17341/gazimmfd.1048446
Chicago Yıldırım, Erdal. “Doğrusal Fresnel kolektörün Performans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 1231-46. https://doi.org/10.17341/gazimmfd.1048446.
EndNote Yıldırım E (October 1, 2022) Doğrusal Fresnel kolektörün performans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 1231–1246.
IEEE E. Yıldırım, “Doğrusal Fresnel kolektörün performans analizi”, GUMMFD, vol. 38, no. 2, pp. 1231–1246, 2022, doi: 10.17341/gazimmfd.1048446.
ISNAD Yıldırım, Erdal. “Doğrusal Fresnel kolektörün Performans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 1231-1246. https://doi.org/10.17341/gazimmfd.1048446.
JAMA Yıldırım E. Doğrusal Fresnel kolektörün performans analizi. GUMMFD. 2022;38:1231–1246.
MLA Yıldırım, Erdal. “Doğrusal Fresnel kolektörün Performans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 1231-46, doi:10.17341/gazimmfd.1048446.
Vancouver Yıldırım E. Doğrusal Fresnel kolektörün performans analizi. GUMMFD. 2022;38(2):1231-46.