Research Article
BibTex RIS Cite

Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu

Year 2023, Volume: 38 Issue: 2, 927 - 936, 07.10.2022
https://doi.org/10.17341/gazimmfd.1059970

Abstract

Radyasyon kullanımı tıp, sanayi, tarım ve nükleer santraller alanında günden güne artarak gelişmeye devam etmektedir. Bu alanlardaki iş kollarında çalışanların ve halkın radyasyonun zararlı etkilerinden korunması, nükleer teknolojilerin gelişiminin yanı sıra oldukça önemli başka bir konudur. Bu çalışmada, kimya laboratuvarımızda sentezlenen bazı hekzaborürler (LaB6 ve CeB6) X–ışını kırınımı (XRD) ile analiz edilmiş, Debye Scherrer eşitliği ile ortalama kristal boyutları hesap edilmiş, nano boyutta oldukları görülmüş ve bu numunelerin gama ışını zırhlama özellikleri incelenmiştir. Gama ışını koruma parametreleri olarak; kütle zayıflatma katsayıları, yarı değer katmanı, onda bir değer katmanı, ortalama serbest yol, etkin atom numarası, etkin elektron yoğunluğu, toplam atomik kesit ve toplam elektronik kesit değerleri, Monte Carlo yöntemi ile belirlendi. Bu yöntemde kullanılan foton enerji aralığı, 1.0 keV - 105 MeV olup, elde edilen veriler XCom programı tarafından hesaplanan sonuçlarla karşılaştırıldı. MC ve XCom arasında hesaplanan sonuçlar, radyasyon koruyucu malzemeler olarak kurşun, vermikülit, borosilikat, beton ve granit ile karşılaştırıldığında başarılı bir tutarlılık göstermiştir. Üretilen hekzaboridlerin, literatürde daha önce araştırılan malzemelere kıyasla daha umut verici gama koruma özelliklerine sahip olduğu sonucuna varılmıştır.

Supporting Institution

Gazi Üniversitesi

Project Number

GÜ-BAP-2021/7015

Thanks

Bu çalışmayı, GÜ-BAP-2021/7015 nolu proje çerçevesinde destekleyen Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkür ederiz.

References

  • 1. Gülbiçim, H., Tufan, M.Ç., Türkan, M.N., The investigation of vermiculite as an alternating shielding materialfor gamma-rays. Radiat. Phys. Chem. 130, 112-117, 2017.
  • 2. Gülbiçim, H., Türkan, M. N. , Aksu, M., Durmuş S., 2019. A study on the investigation of gamma shielding properties of some metal borides. Prog. Nucl. Energy. 115, 107-114, 2019.
  • 3. İçkecan, D., Türkan, N, Gulbicim, H., 2021. Investigation Of Shielding Properties of Impregnated Activated Carbon For Gamma-Rays. App. Rad. Isot., 172, 109687,2021.
  • 4. Chen, S., Bourham, M., Rabiei, A., 2014. Applications of open-cell and closed-cell metal foams for radiation shielding. Procedia Mater. Sci, 4, 293-298,2014.
  • 5. Chen, S, Bourham, M., Rabiei, A., 2015. Attenuation efficiency of X-ray and comparison to gamma-ray and neutrons in composite metal foams. Radiat. Phys. Chem., 117, 12-22, 2015.
  • 6. Sayyed, M., Alzaatreh, M.Y., Dong, M.G., Zaid, M.H.M., Matori, K.A., Tekin, H.O., 2017. A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Results Phys. 7, 2528-2533,2017.
  • 7. Mann, K.S., Heer, M.S., Rani, A., 2015. Effect of low-Z absorber׳s thickness on gamma-ray shielding parameters. Nucl. Instrum. Methods Phys. Res. Sect. A. 797, 19-28, 2015.
  • 8. Mann, K.S., 2017. γ-Ray shielding behaviors of some nuclear engineering materials. Nucl. Eng. Technol. 49(4), 792-800,2016.
  • 9. Bagheri, R., Moghaddam, A.K., Yousefnia, H., 2017. Gamma-ray shielding study of barium–bismuth–borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49(1), 216-223,2016.
  • 10. Taqi, A.H., Khalil, H.J., 2017. An investigation on gamma attenuation of soil and oil-soil samples, J. Radiat. Res. Appl. Sci. 10(3), 252-261, 2017.
  • 11. Lakshminarayana, G., Baki, S.O., Kaky, K.M., Sayyed, M.I., Tekin, H.O., Lira, A., Kityk, I.V., Mahdi, M. A., 2017. Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids. 471, 222-237, 2017.
  • 12. Zorla, E., Ipbüker, C., Biland, A. Kiisk, M., Kovalijov, S., Tkaczyk, A.H., Gulik, V., 2017. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron. Nucl. Eng. Des. 313, 306-318,2016.
  • 13. Salgado, C.M., Brandao, L.E. , Conti, C.C. , Sagado, W.L., 2016. Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks. Appl. Radiat. Isot. 116, 143-149,2016.
  • 14. Oto, B., Yıldız, N., Akdemir, F., Kavaz, E., 2015. Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energy. 85, 391-403, 2015.
  • 15. Waly, E.S-A., Fusco, M.A., Bourham, M.A., 2017. Impact of specialty glass and concrete on gamma shielding in multi-layered PWR dry casks. Prog. Nucl. Energy. 94, 64-70, 2016.
  • 16. Büyükyıldız, M., Kurudirek, M., Ekici, M., O. İçelli, Karabul, Y., 2017. Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma-ray sources. Prog. Nucl. Energy. 100, 245-254,2017.
  • 17. Akman, F., Khattari, Z.Y., Kaçal, M.R., Sayyed, M.I., Afaneh, F., 2019. The radiation shielding features for some silicide, boride and oxide types ceramics. Radiat. Phys. Chem. 160, 9-14,2019.
  • 18. Cherkashina, N.I., Pavlenko, V.I., Noskov, A.V., 2019. Radiation shielding properties of polyimide composite materials. Radiat. Phys. Chem. 159, 111-117,2019.
  • 19. El‑Agawany, F. I., Kavaz, E., Perişanoğlu, U., Al‑Buriahi, M., Rammah, Y. S., Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Appl. Phys. A. 125, 838, 2019.
  • 20. Rammah, Y.S. , Olarinoye, I.O. , El-Agawany, F.I., El-Adawy, A. , El Sayed Y., Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: Their potential in nuclear safety applications. Ceram. Int. 46, 27616-27626, 2020.
  • 21. Rammah, Y.S., Sayyed, M.I., Ali, A.A. , Tekin, H.O. , El-Mallawany, R., Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A,124,832, 2018.
  • 22. Abouhaswa, A.S., Perişanoğlu, U., Tekin, H.O., Kavaz, E., Henaish, A.M.A., Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: Multiple impacts of Er2O3 additive. Ceram. Int. 46, 27849-27859,2020.
  • 23. Athanasakis, M., Ivanov, E., Rio, E. del, Humphry-Baker, S.A., A high temperature W2BeW composite for fusion reactor shielding. J. Nucl. Mater. 532, 152062,2020.
  • 24. Song, Y., Zhang, Z., Mao, J., Lu, C., Tang, S., Xiao, F., Lyu, H., Research on fast intelligence multi-objective optimization method of nuclear reactor radiation shielding. Ann. Nucl. Energy. 149, 107771, 2020.
  • 25. Abbasova, N., Yüksel, Z., Abbasov, E., Gülbiçim H., Tufan, M.Ç., Investigation of gamma-ray attenuation parameters of some materials used in dental applications. Results Phys. 12, 2202-2205, 2019.
  • 26. Agar, O., Sayyed, M.I., Akman, F., Tekin, H.O., Kaçal, M.R., An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 51(3), 853-859, 2019.
  • 27. Olukotun, S.F., Gbenu, S.T., Oladejo, O.F., Sayyed, M.I., Tajudin, S.M., Amosun, A.A., Fasasi, M.K., 2020. Investigation of gamma ray shielding capability of fabricated clay-polyethylene composites using EGS5, XCOM and Phy-X/PSD. Radiat. Phys. Chem. 177, 109079,2020.
  • 28. Singh, J., Singh, H., Sharma, J., Singh, T., Singh, P.S., Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Engergy. 106, 387–395,2018.
  • 29. Singh, G.P., Singh, J., Kaur, P., Kaur, S., Arora, D., Kaur, G.P., Singh, D.P., Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J. Mater. Res. Technol. 9(6), 14425-14442, 2020.
  • 30. Gaikwad, D.K. , Obaid, S.S. , Sayyed, M.I., Bhosale, R.R., Awasarmol, V.V., Kumar, A., Shirsat, M.D., Pawar, P.P., Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to
  • 31. Mahmoud, K.A., Sayyed, M.I., Tashlykov, O.L., Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 51, 1835–1841,2019.
  • 32. Obaid, S.S., Sayyed, M.I., Gaikwad, D.K., Pawar, P.P., Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94. 2018.
  • 33. Han, I., Demir, L., Şahin, M., Determination of mass attenuation coefficients, effective atomic and electron numbers for some natural minerals. Radiat Phys. Chem.,78(9), 760-764,2009.
  • 34. Kawrakow, I., Rogers, D., The EGSnrc code system. NRC Report PIRS-701, NRC, Ottawa, 2000.
  • 35. Berger,M.J., Hubbell,J.H.,XCOM: Photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research,Technical Report NBSlR 87-3597,1987.
Year 2023, Volume: 38 Issue: 2, 927 - 936, 07.10.2022
https://doi.org/10.17341/gazimmfd.1059970

Abstract

Project Number

GÜ-BAP-2021/7015

References

  • 1. Gülbiçim, H., Tufan, M.Ç., Türkan, M.N., The investigation of vermiculite as an alternating shielding materialfor gamma-rays. Radiat. Phys. Chem. 130, 112-117, 2017.
  • 2. Gülbiçim, H., Türkan, M. N. , Aksu, M., Durmuş S., 2019. A study on the investigation of gamma shielding properties of some metal borides. Prog. Nucl. Energy. 115, 107-114, 2019.
  • 3. İçkecan, D., Türkan, N, Gulbicim, H., 2021. Investigation Of Shielding Properties of Impregnated Activated Carbon For Gamma-Rays. App. Rad. Isot., 172, 109687,2021.
  • 4. Chen, S., Bourham, M., Rabiei, A., 2014. Applications of open-cell and closed-cell metal foams for radiation shielding. Procedia Mater. Sci, 4, 293-298,2014.
  • 5. Chen, S, Bourham, M., Rabiei, A., 2015. Attenuation efficiency of X-ray and comparison to gamma-ray and neutrons in composite metal foams. Radiat. Phys. Chem., 117, 12-22, 2015.
  • 6. Sayyed, M., Alzaatreh, M.Y., Dong, M.G., Zaid, M.H.M., Matori, K.A., Tekin, H.O., 2017. A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Results Phys. 7, 2528-2533,2017.
  • 7. Mann, K.S., Heer, M.S., Rani, A., 2015. Effect of low-Z absorber׳s thickness on gamma-ray shielding parameters. Nucl. Instrum. Methods Phys. Res. Sect. A. 797, 19-28, 2015.
  • 8. Mann, K.S., 2017. γ-Ray shielding behaviors of some nuclear engineering materials. Nucl. Eng. Technol. 49(4), 792-800,2016.
  • 9. Bagheri, R., Moghaddam, A.K., Yousefnia, H., 2017. Gamma-ray shielding study of barium–bismuth–borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49(1), 216-223,2016.
  • 10. Taqi, A.H., Khalil, H.J., 2017. An investigation on gamma attenuation of soil and oil-soil samples, J. Radiat. Res. Appl. Sci. 10(3), 252-261, 2017.
  • 11. Lakshminarayana, G., Baki, S.O., Kaky, K.M., Sayyed, M.I., Tekin, H.O., Lira, A., Kityk, I.V., Mahdi, M. A., 2017. Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids. 471, 222-237, 2017.
  • 12. Zorla, E., Ipbüker, C., Biland, A. Kiisk, M., Kovalijov, S., Tkaczyk, A.H., Gulik, V., 2017. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron. Nucl. Eng. Des. 313, 306-318,2016.
  • 13. Salgado, C.M., Brandao, L.E. , Conti, C.C. , Sagado, W.L., 2016. Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks. Appl. Radiat. Isot. 116, 143-149,2016.
  • 14. Oto, B., Yıldız, N., Akdemir, F., Kavaz, E., 2015. Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energy. 85, 391-403, 2015.
  • 15. Waly, E.S-A., Fusco, M.A., Bourham, M.A., 2017. Impact of specialty glass and concrete on gamma shielding in multi-layered PWR dry casks. Prog. Nucl. Energy. 94, 64-70, 2016.
  • 16. Büyükyıldız, M., Kurudirek, M., Ekici, M., O. İçelli, Karabul, Y., 2017. Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma-ray sources. Prog. Nucl. Energy. 100, 245-254,2017.
  • 17. Akman, F., Khattari, Z.Y., Kaçal, M.R., Sayyed, M.I., Afaneh, F., 2019. The radiation shielding features for some silicide, boride and oxide types ceramics. Radiat. Phys. Chem. 160, 9-14,2019.
  • 18. Cherkashina, N.I., Pavlenko, V.I., Noskov, A.V., 2019. Radiation shielding properties of polyimide composite materials. Radiat. Phys. Chem. 159, 111-117,2019.
  • 19. El‑Agawany, F. I., Kavaz, E., Perişanoğlu, U., Al‑Buriahi, M., Rammah, Y. S., Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Appl. Phys. A. 125, 838, 2019.
  • 20. Rammah, Y.S. , Olarinoye, I.O. , El-Agawany, F.I., El-Adawy, A. , El Sayed Y., Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: Their potential in nuclear safety applications. Ceram. Int. 46, 27616-27626, 2020.
  • 21. Rammah, Y.S., Sayyed, M.I., Ali, A.A. , Tekin, H.O. , El-Mallawany, R., Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A,124,832, 2018.
  • 22. Abouhaswa, A.S., Perişanoğlu, U., Tekin, H.O., Kavaz, E., Henaish, A.M.A., Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: Multiple impacts of Er2O3 additive. Ceram. Int. 46, 27849-27859,2020.
  • 23. Athanasakis, M., Ivanov, E., Rio, E. del, Humphry-Baker, S.A., A high temperature W2BeW composite for fusion reactor shielding. J. Nucl. Mater. 532, 152062,2020.
  • 24. Song, Y., Zhang, Z., Mao, J., Lu, C., Tang, S., Xiao, F., Lyu, H., Research on fast intelligence multi-objective optimization method of nuclear reactor radiation shielding. Ann. Nucl. Energy. 149, 107771, 2020.
  • 25. Abbasova, N., Yüksel, Z., Abbasov, E., Gülbiçim H., Tufan, M.Ç., Investigation of gamma-ray attenuation parameters of some materials used in dental applications. Results Phys. 12, 2202-2205, 2019.
  • 26. Agar, O., Sayyed, M.I., Akman, F., Tekin, H.O., Kaçal, M.R., An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 51(3), 853-859, 2019.
  • 27. Olukotun, S.F., Gbenu, S.T., Oladejo, O.F., Sayyed, M.I., Tajudin, S.M., Amosun, A.A., Fasasi, M.K., 2020. Investigation of gamma ray shielding capability of fabricated clay-polyethylene composites using EGS5, XCOM and Phy-X/PSD. Radiat. Phys. Chem. 177, 109079,2020.
  • 28. Singh, J., Singh, H., Sharma, J., Singh, T., Singh, P.S., Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Engergy. 106, 387–395,2018.
  • 29. Singh, G.P., Singh, J., Kaur, P., Kaur, S., Arora, D., Kaur, G.P., Singh, D.P., Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J. Mater. Res. Technol. 9(6), 14425-14442, 2020.
  • 30. Gaikwad, D.K. , Obaid, S.S. , Sayyed, M.I., Bhosale, R.R., Awasarmol, V.V., Kumar, A., Shirsat, M.D., Pawar, P.P., Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to
  • 31. Mahmoud, K.A., Sayyed, M.I., Tashlykov, O.L., Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 51, 1835–1841,2019.
  • 32. Obaid, S.S., Sayyed, M.I., Gaikwad, D.K., Pawar, P.P., Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94. 2018.
  • 33. Han, I., Demir, L., Şahin, M., Determination of mass attenuation coefficients, effective atomic and electron numbers for some natural minerals. Radiat Phys. Chem.,78(9), 760-764,2009.
  • 34. Kawrakow, I., Rogers, D., The EGSnrc code system. NRC Report PIRS-701, NRC, Ottawa, 2000.
  • 35. Berger,M.J., Hubbell,J.H.,XCOM: Photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research,Technical Report NBSlR 87-3597,1987.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Aynur Özcan 0000-0003-2514-5460

Nureddin Türkan This is me 0000-0002-0452-9484

Mecit Aksu 0000-0002-9405-1217

Hasan Gülbiçim This is me 0000-0003-4518-2509

Esra Kurt This is me 0000-0001-8147-8791

Project Number GÜ-BAP-2021/7015
Publication Date October 7, 2022
Submission Date January 19, 2022
Acceptance Date April 23, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Özcan, A., Türkan, N., Aksu, M., Gülbiçim, H., et al. (2022). Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 927-936. https://doi.org/10.17341/gazimmfd.1059970
AMA Özcan A, Türkan N, Aksu M, Gülbiçim H, Kurt E. Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu. GUMMFD. October 2022;38(2):927-936. doi:10.17341/gazimmfd.1059970
Chicago Özcan, Aynur, Nureddin Türkan, Mecit Aksu, Hasan Gülbiçim, and Esra Kurt. “Magnezyotermik Indirgeme Ile Sentezlenen Lantanyum hekzaborür (LaB6) Ve Seryum hekzaborür (CeB6) Malzemelerinin Gama zırhlama özelliklerinin Monte Carlo simülasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 927-36. https://doi.org/10.17341/gazimmfd.1059970.
EndNote Özcan A, Türkan N, Aksu M, Gülbiçim H, Kurt E (October 1, 2022) Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 927–936.
IEEE A. Özcan, N. Türkan, M. Aksu, H. Gülbiçim, and E. Kurt, “Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu”, GUMMFD, vol. 38, no. 2, pp. 927–936, 2022, doi: 10.17341/gazimmfd.1059970.
ISNAD Özcan, Aynur et al. “Magnezyotermik Indirgeme Ile Sentezlenen Lantanyum hekzaborür (LaB6) Ve Seryum hekzaborür (CeB6) Malzemelerinin Gama zırhlama özelliklerinin Monte Carlo simülasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 927-936. https://doi.org/10.17341/gazimmfd.1059970.
JAMA Özcan A, Türkan N, Aksu M, Gülbiçim H, Kurt E. Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu. GUMMFD. 2022;38:927–936.
MLA Özcan, Aynur et al. “Magnezyotermik Indirgeme Ile Sentezlenen Lantanyum hekzaborür (LaB6) Ve Seryum hekzaborür (CeB6) Malzemelerinin Gama zırhlama özelliklerinin Monte Carlo simülasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 927-36, doi:10.17341/gazimmfd.1059970.
Vancouver Özcan A, Türkan N, Aksu M, Gülbiçim H, Kurt E. Magnezyotermik indirgeme ile sentezlenen Lantanyum hekzaborür (LaB6) ve Seryum hekzaborür (CeB6) malzemelerinin gama zırhlama özelliklerinin Monte Carlo simülasyonu. GUMMFD. 2022;38(2):927-36.