Research Article
BibTex RIS Cite

Benzetim tabanlı adaptif aşı dağıtım stratejisi

Year 2023, Volume: 38 Issue: 2, 1065 - 1078, 07.10.2022
https://doi.org/10.17341/gazimmfd.758346

Abstract

Aşılama, bir salgın sırasında oluşacak vaka sayısını azaltmak için kullanılan en yaygın müdahale yöntemlerinden biridir. Bir toplumda hangi yaş ve hedef gruplarının öncelikle aşılanacağına karar vermek çok önemli bir noktadır. Bu çalışmada, hem bu nokta hem de geç aşı dağıtım senaryosu, yeni bir aşı dağıtma stratejisi ile düşünülmüştür. İncelenen populasyon farklı kontak ve bulaştırma oranları düşünülerek beş farklı gruba ayrılmıştır. Önerilen aşı dağıtma stratejisi, salgın sırasında oluşan vaka sayılarını da düşünerek, haftalık dağıtılabilecek aşıları farklı yaş gruplarlarında bulunan kişilere, bir hafta süre için farklı dağıtım stratejilerini modelleyen bir bezetimin sonuçlarına göre dağıtmaktadır. Bu method, literaturdeki birçok çalışmada düşünülen okul çağındaki çocukları öncelikle aşılama stratejisine karşı test edilmiştir. Farklı kontak ve bulaştırma oranlarına göre oluşturulan 20 farklı senaryo ve 3 farklı kapsama seviyesi için elde edilen sonuçlara göre, önerilen method %20 ve %30 kapsama seviyesi için karşılaştırılan stratejiden daha iyi sonuçlar vermiş, %10 kapsama seviyesi için de benzer sonuçlar gözlenmiştir. Sonuç olarak, kapsama seviyesinin göreceli daha yüksek olduğu durumlarda, önerilen metodun kontak ve bulaş oranlarında meydana gelen değişimlere karşı daha gürbüz olduğu ve daha iyi sonuçlar verdiği görülmüştür. Başta COVID-19 olmak üzere gelecekte yaşanabilecek salgınlarda, hastalık dinamiklerini de düşünerek, efektif aşı dağıtımlarını gerçekleştirebilecektir.

References

  • 1. McConnell J., Ready for the next influenza pandemic?, The Lancet, 359(9312), 1133, 2002.
  • 2. World Health Organization, Overview of ebola virus, https://www.who.int/health-topics/ebola/#tab=tab_1, Erişim Tarihi Ocak 1, 2020.
  • 3. World Health Organization, Coronavirus pandemic disease, https://www.who.int/emergencies/diseases/novel-coronavirus-2019, Erişim Tarihi 21 Nisan, 2020.
  • 4. Pezzotti P., Bellino S., Prestinaci F., Iacchini S., Lucaroni F., Camoni L., ... & Rezza G., The impact of immunization programs on 10 vaccine preventable diseases in Italy: 1900–2015, Vaccine, 36(11), 1435-1443, 2018.
  • 5. Wood J., McCaw J., Becker N., Nolan T., & MacIntyre C. R., Optimal dosing and dynamic distribution of vaccines in an influenza pandemic, American journal of epidemiology, 169(12), 1517-1524, 2009.
  • 6. Matrajt L., & Longini Jr I. M., Optimizing vaccine allocation at different points in time during an epidemic, PloS one, 5(11), e13767, 2010.
  • 7. Tuite A. R., Fisman D. N., Kwong J. C., & Greer A. L., Optimal pandemic influenza vaccine allocation strategies for the Canadian population. PloS one, 5(5), e10520, 2010.
  • 8. Galvani A. P., Reluga T. C., & Chapman G. B., Longstanding influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum, Proceedings of the National Academy of Sciences, 104(13), 5692-5697, 2007.
  • 9. Tsuzuki S., Baguelin M., Pebody R., & Van Leeuwen E., Modelling the optimal target age group for seasonal influenza vaccination in Japan, Vaccine, 38(4), 752-762, 2019.
  • 10. Medlock J., & Galvani A. P., Optimizing influenza vaccine distribution, Science, 325(5948), 1705-1708, 2009.
  • 11. Kawai S., Nanri S., Ban E., Inokuchi M., Tanaka T., Tokumura M., ... & Sugaya N., Influenza vaccination of schoolchildren and influenza outbreaks in a school. Clinical infectious diseases, 53(2), 130-136, 2011.
  • 12. Paleshi A., Bae K. H., Evans G. & Heragu S., A simulation-based optimization approach for mitigation of pandemic influenza, IISE Transactions on Healthcare Systems Engineering, 7(2), 107-120, 2017.
  • 13. Matrajt L., & Longini Jr I. M., Optimizing vaccine allocation at different points in time during an epidemic. PloSone, 5(11), e13767, 2010.
  • 14. Shim E., Prioritization of delayed vaccination for pandemic influenza. Mathematical biosciences and engineering: MBE, 8(1), 95, 2011.
  • 15. Knipl D. H. & Röst G., Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 8(1), 123, 2011.
  • 16. Conway J. M., Tuite A. R., Fisman D. N., Hupert N., Meza R., Davoudi B., ... & Meyers L. A., Vaccination against 2009 pandemic H1N1 in a population dynamical model of Vancouver, Canada: timing is everything, BMC public health, 11(1), 932, 2011.
  • 17. Yaesoubi R. & Cohen T., Identifying cost‐effective dynamic policies to control epidemics, Statistics in medicine, 35(28), 5189-5209, 2016.
  • 18. Yaesoubi R. & Cohen T., Adaptive decision‐making during epidemics, Decision Analytics and Optimization in Disease Prevention and Treatment, Wiley, Editör: Kong N., Zhang S., 59-79, 2018.
  • 19. Yanez A., Towards the control of epidemic spread: Designing reinforcement learning environments, Doctoral dissertation, University of Central Florida, Orange Country, 2019.
  • 20. Libin P., Moonens A., Verstraeten T., Perez-Sanjines F., Hens N., Lemey P., & Nowé A., Deep reinforcement learning for large-scale epidemic control, arXiv preprint arXiv:2003.13676, 2019.
  • 21. Miralles-Pechuán L., Jiménez F., Ponce H., & Martínez-Villaseñor L., A Deep Q-learning/genetic Algorithms Based Novel Methodology for Optimizing Covid-19 Pandemic Government Actions, arXiv preprint arXiv:2005.07656, 2020.
  • 22. Prem K., Cook A. R., & Jit M., Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS computational biology, 13(9), e1005697, 2017.
  • 23. Kermack W. O. & McKendrick A. G., A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 115(772), 700–721, 1927.
  • 24. Hethcote H.W., The mathematics of infectious diseases. SIAM review, 42(4), 599-653, 2000.
  • 25. Zaric G.S. and Brandeau M.L., Resource allocation for epidemic control over short time horizons. Mathematical Biosciences, 171(1), 33-58, 2001.
  • 26. Demirbilek M., YAYsim: Salgın Modelleme ve Karar Destek Sistemi, Bilecik Seyh Edebali University Journal of Science, 7 (1), 104-112, 2020.
  • 27. Mossong J., Hens N., Jit M., Beutels P., Auranen K., Mikolajczyk R., Massari M., Salmaso S., Tomba G.S., Wallinga J. and Heijne J., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS medicine, 5(3), 2008.
  • 28. Glezen W. P., Emerging infections: pandemic influenza. Epidemiologic reviews, 18(1), 64-76, 1996.
  • 29. Merler S., Ajelli M., Pugliese A. & Ferguson N. M., Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling. PLoS computational biology, 7(9), e1002205, 2011.
Year 2023, Volume: 38 Issue: 2, 1065 - 1078, 07.10.2022
https://doi.org/10.17341/gazimmfd.758346

Abstract

References

  • 1. McConnell J., Ready for the next influenza pandemic?, The Lancet, 359(9312), 1133, 2002.
  • 2. World Health Organization, Overview of ebola virus, https://www.who.int/health-topics/ebola/#tab=tab_1, Erişim Tarihi Ocak 1, 2020.
  • 3. World Health Organization, Coronavirus pandemic disease, https://www.who.int/emergencies/diseases/novel-coronavirus-2019, Erişim Tarihi 21 Nisan, 2020.
  • 4. Pezzotti P., Bellino S., Prestinaci F., Iacchini S., Lucaroni F., Camoni L., ... & Rezza G., The impact of immunization programs on 10 vaccine preventable diseases in Italy: 1900–2015, Vaccine, 36(11), 1435-1443, 2018.
  • 5. Wood J., McCaw J., Becker N., Nolan T., & MacIntyre C. R., Optimal dosing and dynamic distribution of vaccines in an influenza pandemic, American journal of epidemiology, 169(12), 1517-1524, 2009.
  • 6. Matrajt L., & Longini Jr I. M., Optimizing vaccine allocation at different points in time during an epidemic, PloS one, 5(11), e13767, 2010.
  • 7. Tuite A. R., Fisman D. N., Kwong J. C., & Greer A. L., Optimal pandemic influenza vaccine allocation strategies for the Canadian population. PloS one, 5(5), e10520, 2010.
  • 8. Galvani A. P., Reluga T. C., & Chapman G. B., Longstanding influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum, Proceedings of the National Academy of Sciences, 104(13), 5692-5697, 2007.
  • 9. Tsuzuki S., Baguelin M., Pebody R., & Van Leeuwen E., Modelling the optimal target age group for seasonal influenza vaccination in Japan, Vaccine, 38(4), 752-762, 2019.
  • 10. Medlock J., & Galvani A. P., Optimizing influenza vaccine distribution, Science, 325(5948), 1705-1708, 2009.
  • 11. Kawai S., Nanri S., Ban E., Inokuchi M., Tanaka T., Tokumura M., ... & Sugaya N., Influenza vaccination of schoolchildren and influenza outbreaks in a school. Clinical infectious diseases, 53(2), 130-136, 2011.
  • 12. Paleshi A., Bae K. H., Evans G. & Heragu S., A simulation-based optimization approach for mitigation of pandemic influenza, IISE Transactions on Healthcare Systems Engineering, 7(2), 107-120, 2017.
  • 13. Matrajt L., & Longini Jr I. M., Optimizing vaccine allocation at different points in time during an epidemic. PloSone, 5(11), e13767, 2010.
  • 14. Shim E., Prioritization of delayed vaccination for pandemic influenza. Mathematical biosciences and engineering: MBE, 8(1), 95, 2011.
  • 15. Knipl D. H. & Röst G., Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 8(1), 123, 2011.
  • 16. Conway J. M., Tuite A. R., Fisman D. N., Hupert N., Meza R., Davoudi B., ... & Meyers L. A., Vaccination against 2009 pandemic H1N1 in a population dynamical model of Vancouver, Canada: timing is everything, BMC public health, 11(1), 932, 2011.
  • 17. Yaesoubi R. & Cohen T., Identifying cost‐effective dynamic policies to control epidemics, Statistics in medicine, 35(28), 5189-5209, 2016.
  • 18. Yaesoubi R. & Cohen T., Adaptive decision‐making during epidemics, Decision Analytics and Optimization in Disease Prevention and Treatment, Wiley, Editör: Kong N., Zhang S., 59-79, 2018.
  • 19. Yanez A., Towards the control of epidemic spread: Designing reinforcement learning environments, Doctoral dissertation, University of Central Florida, Orange Country, 2019.
  • 20. Libin P., Moonens A., Verstraeten T., Perez-Sanjines F., Hens N., Lemey P., & Nowé A., Deep reinforcement learning for large-scale epidemic control, arXiv preprint arXiv:2003.13676, 2019.
  • 21. Miralles-Pechuán L., Jiménez F., Ponce H., & Martínez-Villaseñor L., A Deep Q-learning/genetic Algorithms Based Novel Methodology for Optimizing Covid-19 Pandemic Government Actions, arXiv preprint arXiv:2005.07656, 2020.
  • 22. Prem K., Cook A. R., & Jit M., Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS computational biology, 13(9), e1005697, 2017.
  • 23. Kermack W. O. & McKendrick A. G., A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 115(772), 700–721, 1927.
  • 24. Hethcote H.W., The mathematics of infectious diseases. SIAM review, 42(4), 599-653, 2000.
  • 25. Zaric G.S. and Brandeau M.L., Resource allocation for epidemic control over short time horizons. Mathematical Biosciences, 171(1), 33-58, 2001.
  • 26. Demirbilek M., YAYsim: Salgın Modelleme ve Karar Destek Sistemi, Bilecik Seyh Edebali University Journal of Science, 7 (1), 104-112, 2020.
  • 27. Mossong J., Hens N., Jit M., Beutels P., Auranen K., Mikolajczyk R., Massari M., Salmaso S., Tomba G.S., Wallinga J. and Heijne J., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS medicine, 5(3), 2008.
  • 28. Glezen W. P., Emerging infections: pandemic influenza. Epidemiologic reviews, 18(1), 64-76, 1996.
  • 29. Merler S., Ajelli M., Pugliese A. & Ferguson N. M., Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling. PLoS computational biology, 7(9), e1002205, 2011.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Demirbilek 0000-0002-1520-2882

Publication Date October 7, 2022
Submission Date June 26, 2020
Acceptance Date May 14, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Demirbilek, M. (2022). Benzetim tabanlı adaptif aşı dağıtım stratejisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1065-1078. https://doi.org/10.17341/gazimmfd.758346
AMA Demirbilek M. Benzetim tabanlı adaptif aşı dağıtım stratejisi. GUMMFD. October 2022;38(2):1065-1078. doi:10.17341/gazimmfd.758346
Chicago Demirbilek, Mustafa. “Benzetim Tabanlı Adaptif aşı dağıtım Stratejisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 1065-78. https://doi.org/10.17341/gazimmfd.758346.
EndNote Demirbilek M (October 1, 2022) Benzetim tabanlı adaptif aşı dağıtım stratejisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 1065–1078.
IEEE M. Demirbilek, “Benzetim tabanlı adaptif aşı dağıtım stratejisi”, GUMMFD, vol. 38, no. 2, pp. 1065–1078, 2022, doi: 10.17341/gazimmfd.758346.
ISNAD Demirbilek, Mustafa. “Benzetim Tabanlı Adaptif aşı dağıtım Stratejisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 1065-1078. https://doi.org/10.17341/gazimmfd.758346.
JAMA Demirbilek M. Benzetim tabanlı adaptif aşı dağıtım stratejisi. GUMMFD. 2022;38:1065–1078.
MLA Demirbilek, Mustafa. “Benzetim Tabanlı Adaptif aşı dağıtım Stratejisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 1065-78, doi:10.17341/gazimmfd.758346.
Vancouver Demirbilek M. Benzetim tabanlı adaptif aşı dağıtım stratejisi. GUMMFD. 2022;38(2):1065-78.