Research Article
BibTex RIS Cite

Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi

Year 2023, Volume: 38 Issue: 3, 1505 - 1518, 06.01.2023
https://doi.org/10.17341/gazimmfd.1008501

Abstract

Antibiyotik kalıntılarının su kaynaklarındaki toksisitesi çevreyi olumsuz etkilemektedir. Son yıllarda yapılan çalışmalar antibiyotikler gibi organik kirleticilerin ucuz ve çevreye uyumlu adsorbentlerle sulu çözeltilerden giderimine odaklanmıştır. Bu çalışmada, doğal Manisa-Gördes klinoptiloliti oksitetrasiklin hidroklorür (OTC-HCL) adsorpsiyonu, kesikli sisteminde 298-323 K'de incelenmiştir. pH, başlangıç konsantrasyonu, adsorban dozu, temas süresi, karıştırma hızı ve sıcaklığın adsorpsiyon üzerindeki etkileri incelenmiş ve optimum parametreler belirlenmiştir. Adsorpsiyon izotermleri Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin modelleri kullanılarak analiz edilmiştir. Kinetik sabitler yalancı birinci derece, yalancı ikinci derece, inratapartikül difüzyon ve Elovich modelleriyle belirlenmiştir. Doğal zeolitin OTC-HCL adsorpsiyonu, en iyi Freundlich izotermine ve sözde ikinci dereceden kinetik modeline uymuştur. Doğal zeolitin maksimum adsorpsiyon kapasitesi 323 K'de 60,97 mg/g olarak belirlenmiştir. Termodinamik çalışmalar, OTC-HCL’nin doğal zeolit ile adsorpsiyonunun kendiliğinden ve endotermik olduğunu göstermiştir. Doğal zeolitin fizikokimyasal karakterizasyonu adsorpsiyondan önce ve sonra, N2 adsorpsiyon-desorpsiyon, XRD, FTIR, SEM-EDX analizleri ile gerçekleştirilmiştir. Doğal zeolitin BET spesfik yüzey alanı, adsorpsiyon sürecine bağlı olarak adsorpsiyon sonrasında azalmıştır. Karakterizasyon sonuçları, doğal zeolit yüzeyinde OTC-HCL moleküllerinin başarılı bir adsorbe olduğunu göstermiştir.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

(BAP/M-764 kodlu proje)

Thanks

Bu çalışma Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP/M-764 kodlu proje) tarafından desteklenmektedir. Yazarlar, Deva Holding-İstanbul-Türkiye ve Gordes Zeolite-İzmir-Türkiye tarafından sağlanan antibiyotik ve zeolit için teşekkürlerini bildiriyorlar.

References

  • [1] Manyi-Loh C., Mamphweli S., Meyer E., Okoh A., Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications, Molecules, 23 (4), 795, 2018, doi: 10.3390/molecules23040795.
  • [2] Burch K. D., Han B., Pichtel J., Zubkov T., Removal efficiency of commonly prescribed antibiotics via tertiary wastewater treatment, Environmental Science and Pollution Research, 26 (7), 6301-6310, 2019, doi: 10.1007/s11356-019-04170-w.
  • [3] Polianciuc S.I., Gurzău A.E., Kiss B., Georgia Ștefan M., Loghin F., Antibiotics in the environment: causes and consequences, Medicine and Pharmacy Reports, 93 (3), 231-240, 2020, doi: 10.15386/mpr-1742.
  • [4] Huang A., Yan M., Lin J., Xu L., Gong H., Gong H., A review of processes for removing antibiotics from breeding wastewater, International Journal of Environmental Research and Public Health, 18(9), 4909, 2021, doi: 10.3390/ijerph18094909.
  • [5] Gopal G., Alex S.A., Chandrasekaran N., Mukherjee A., A review on tetracycline removal from aqueous systems by advanced treatment techniques, RSC Advances, 10(45), 27081-27095, 2020, doi: 10.1039/d0ra04264a.
  • [6] Vu T.H., Ngo T.H.V., Duong T.T.A., Nguyen T.H. L., Mai X.T. et al., Removal of Tetracycline from Aqueous Solution Using Nanocomposite Based on Polyanion-Modified Laterite Material,” Journal of Analytical Methods in Chemistry, 2020, 6623511, 2020, doi: 10.1155/2020/6623511.
  • [7] Martínez-Olivas A., Torres-Pérez J., Balderas-Hernández P., Reyes-López S.Y., Oxytetracycline Sorption onto Synthetized Materials from Hydroxyapatite and Aluminosilicates, Water, Air, and Soil Pollution, 231(264), 2020, doi: 10.1007/s11270-020-04638-3.
  • [8] Lye J.W.P., Saman N., Sharuddin S.S.N., Othman N.S., Mohtar, S.S. et al., Removal Performance of Tetracycline and Oxytetracycline From Aqueous Solution Via Natural Zeolites: An Equilibrium and Kinetic Study, Clean, Soil, Air, Water, 45 (10), 1600260, 2017, doi: 10.1002/clen.201600260.
  • [9] Yu F., Li Y., Han S., Ma J., Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153, 365-385, 2016, doi: 10.1016/j.chemosphere.2016.03.083.
  • [10] Fang Li M., Guo Liu Y., Ming Zeng G., Liu N., Bo Liu S., Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review, Chemosphere, 226, 360-380, 2019, doi: 10.1016/j.chemosphere.2019.03.117.
  • [11] Azhar M.R., Abid H.R., Periasamy V., Sun H., Tade M.O., Wang S., Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment, Journal of Colloid and Interface Science, 500, 88-95, 2017, doi: 10.1016/j.jcis.2017.04.001.
  • [12] Ersan M., Guler U.A., Acikel U., Sarioglu M., Synthesis of hydroxyapatite/clay and hydroxyapatite/pumice composites for tetracycline removal from aqueous solutions, Process Safety and Environmental Protection, 96, 22-32, 2015, doi: 10.1016/j.psep.2015.04.001.
  • [13] Pi S., Li A., Wei W., Feng L., Zhang G. et al., Synthesis of a novel magnetic nano-scale biosorbent using extracellular polymeric substances from Klebsiella sp. J1 for tetracycline adsorption,” Bioresource Technology, 245(Pt A), 471-476, 2017, doi: 10.1016/j.biortech.2017.08.190.
  • [14] Santaeufemia S., Torres E., Mera R., Abalde J., Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum, Journal of Hazardous Materials, 320, 315-325, 2016, doi: 10.1016/j.jhazmat.2016.08.042.
  • [15] Li Zou Y., Huang H., Chu M., Lin J., Giang Yin D., Nan Li Y., Adsorption research of tetracycline from water by HCl-modified zeolite, Advanced Materials Research, 573–574, 43-47, 2012, doi: 10.4028/www.scientific.net/AMR.573-574.43.
  • [16] Wu M., Zhao S., Tang M., Jing R., Shao Y. et al., Adsorption of sulfamethoxazole and tetracycline on montmorillonite in single and binary systems, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 575, 264-270, 2019, doi: 10.1016/j.colsurfa.2019.05.025.
  • [17] Jannat Abadi M.H., Nouri S.M.M., Zhiani R., Heydarzadeh H.D., Motavalizadehkakhky A., Removal of tetracycline from aqueous solution using Fe-doped zeolite, International Journal of Industrial Chemistry, 10(4), 291-300, 2019, doi: 10.1007/s40090-019-0191-6.
  • [18] Guo Y., Huang W., Chen B., Zhao Y., Liu D. et al., Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism, Journal of Hazardous Materials, 339, 22-32, 2017, doi: 10.1016/j.jhazmat.2017.06.006.
  • [19] de Sousa D.N.R., Insa S., Mozeto A.A., Petrovic M., Chaves T.F., Fadini P.S., Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites, Chemosphere, 205,137-146, 2018, doi: 10.1016/j.chemosphere.2018.04.085.
  • [20] Huang L., Sun Y., Wang W., Yue Q., Yang T., Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC), Chemical Engineering Journal, 171 (3), 1446-1453, 2011, doi: 10.1016/j.cej.2011.05.041.
  • [21] Li N., Zhou L., Jin X., Owens G., Chen Z., Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework, Journal of Hazardous Materials, 366, 563-572, 2019, doi: 10.1016/j.jhazmat.2018.12.047.
  • [22] de F. Silva C.E., da Gama B.M.V., da S. Gonçalves A.H., Medeiros J.A., de S. Abud A.K., Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength, Journal of King Saud University- Engineering Sciences, 32(6), 351-359, 2020, doi: 10.1016/j.jksues.2019.04.006.
  • [23] Harja M., Ciobanu G., Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Science of the Total Environment, 628–629, 36-43, 2018, doi: 10.1016/j.scitotenv.2018.02.027.
  • [24] Wang Y., Gong S., Li Y., Li Z., Fu J., Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust, Scientific Reports, 10(1), 2960, 2020, doi: 10.1038/s41598-020-59850-2.
  • [25] Zhou Y., Liu X., Xiang Y., Wang P., Zhang J. et al., Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling, Bioresource Technology, 245, 266-273, 2017, doi: 10.1016/j.biortech.2017.08.178.
  • [26] Bayat M., Javanbakht V., Esmaili J., Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye, International Journal of Biological Macromolecules, 116, 607-619, 2018, doi: 10.1016/j.ijbiomac.2018.05.012.
  • [27] Chang J., Ma J., Zhang D., Qiao N., Hu M. et al., Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite, Applied Clay Science, 119(1), 132-140, 2016, doi: 10.1016/j.clay.2015.06.038.
  • [28] Yu B., Bai Y., Ming Z., Yang H., Chen L. et al., Adsorption behaviors of tetracycline on magnetic graphene oxide sponge, Materials Chemistry and Physics, 198, 298-290, 2017, doi: 10.1016/j.matchemphys.2017.05.042.
  • [29] Yu R., Yu X., Xue B., Liao J., Zhu W., Fu J., Adsorption of oxytetracycline from aquaculture wastewater by modified carbon nanotubes: kinetics, isotherms and thermodynamics, Fullerenes Nanotubes and Carbon Nanostructures, 29(1), 28-38, 2021, doi: 10.1080/1536383X.2020.1806248.
  • [30] Mersin G., Açıkel Ü., Levent M., Efficient adsorption of Basic Blue 41 from textile wastewaters by natural and magnetically modified Manisa-Gördes clinoptilolite, Chemical Engineering and Processing - Process Intensification, 169, 108632, 2021, doi: 10.1016/j.cep.2021.108632.
  • [31] Juengchareonpoon K., Boonamnuayvitaya V., Wanichpongpan P., Kinetics and isotherms of oxytetracycline adsorption on β-cyclodextrin/carboxymethylcellulose hydrogel films, Aquaculture Research, 50(11), 3412-3419, 2019, doi: 10.1111/are.14299.
  • [32] Andrade C.A., Zambrano-Intriago L.A., Oliveira N.S., Vieira J.S, Quiroz-Fernández L.S., Rodríguez-Díaz J.M., Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process, Water, Air, and Soil Pollution, 231(103), 2020, doi: 10.1007/s11270-020-04473-6.
  • [33] Algothmi W.M., Bandaru N.M., Yu Y., Shapter J. G., Ellis A.V., Alginate-graphene oxide hybrid gel beads: An efficient copper adsorbent material, Journal of Colloid and Interface Science, 397, 32-38, 2013, doi: 10.1016/j.jcis.2013.01.051.
  • [34] Wang C.T., Chou W.L., Chung M.H., Kuo Y.M., COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination, 253(1–3), 129-134, 2010, doi: 10.1016/j.desal.2009.11.020.
  • [35] Li Y., Du Q., Liu T., Sun J., Jiao Y. et al., Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene, Materials Research Bulletin, 47(8), 1898-1904, 2012, doi: 10.1016/j.materresbull.2012.04.021.
  • [36] Song Y., Sackey E.A., Wang H., Wang H., Adsorption of oxytetracycline on kaolinite, PLoS ONE, 14(11), 2019, doi: 10.1371/journal.pone.0225335.
  • [37] Eniola J.O., Kumar R., Mohamed O.A., Al-Rashdi A.A., Barakat M.A., Synthesis and characterization of CuFe2O4/NiMgAl-LDH composite for the efficient removal of oxytetracycline antibiotic, Journal of Saudi Chemical Society, 24(1), 139-150, 2020, doi: 10.1016/j.jscs.2019.11.001.
  • [38] Edet U.A., Ifelebuegu A.O., Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste, Processes, 8(6), 665, 2020, doi: 10.3390/PR8060665.
  • [39] Kragović M., Daković A., Marković M., Krstić J., Gatta G.D., Rotiroti N., Characterization of lead sorption by the natural and Fe(III)-modified zeolite, Applied Surface Science, 283, 764-774 2013, doi: 10.1016/j.apsusc.2013.07.016.
  • [40] Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso, F. et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9–10),1051-1069, 2015, doi: 10.1515/pac-2014-1117.
  • [41] Yudha S.S., Adfa M., Falahudin A., Eco-friendly coating of natural zeolite with metallic gold, and characterization of the resulting products, Oriental Journal of Chemistry, 34(1), 2018, doi: 10.13005/ojc/340160.
  • [42] Rahmani F., Haghighi M., Amini M., The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene, Journal of Industrial and Engineering Chemistry, 31, 142-155, 2015, doi: 10.1016/j.jiec.2015.06.018.
  • [43] Thangadurai S., Abraham J.T., Srivastava A.K., Nataraja Moorthy M., Shukla S.K., Anjaneyulu Y., X-ray powder diffraction patterns for certain β-lactam, tetracycline and macrolide antibiotic drugs, Analytical Sciences, 21(7), 833-838, 2005, doi: 10.2116/analsci.21.833.
  • [44] Bueno M.S., Miñambres G.G., Bongioanni A., Chattah A.K., Aiassa V. et al., Exploring solid forms of oxytetracycline hydrochloride, International Journal of Pharmaceutics, 585, 119496, 2020, doi: 10.1016/j.ijpharm.2020.119496.
  • [45] Mohseni-Bandpi A., Al-Musawi T.J., Ghahramani E., Zarrabi M., Mohebi S., Vahed S.A, Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles, Journal of Molecular Liquids, 218, 615-624, 2016, doi: 10.1016/j.molliq.2016.02.092.
  • [46] Nosrati R., Olad A., Nofouzi K., A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2 /Ag-exchanged-zeolite-A nanocomposite, Applied Surface Science, 346, 543-553, 2015, doi: 10.1016/j.apsusc.2015.04.056.
  • [47] Chakarova K., Hadjiivanov K., FTIR study of N2 and CO adsorption on H-D-FER, Microporous and Mesoporous Materials, 177, 59-65, 2013, doi: 10.1016/j.micromeso.2013.04.022.
  • [48] Samarghandi M.R., Al-Musawi T.J., Mohseni-Bandpi A., Zarrabi M., Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles, Journal of Molecular Liquids, 211, 431-441, 2015, doi: 10.1016/j.molliq.2015.06.067.
  • [49] Li Z., Kolb V.M.K., Jiang W.T., Hong H., FTIR and XRD investigations of tetracycline intercalation in smectites, Clays and Clay Minerals, 58, 462-474, 2010, doi: 10.1346/CCMN.2010.0580402.
  • [50] Wan D., Wu L., Liu Y., Chen J., Zhao H., Xiao S., Enhanced Adsorption of Aqueous Tetracycline Hydrochloride on Renewable Porous Clay-Carbon Adsorbent Derived from Spent Bleaching Earth via Pyrolysis, Langmuir, 35(11), 3925-3936, 2019, doi: 10.1021/acs.langmuir.8b04179.
Year 2023, Volume: 38 Issue: 3, 1505 - 1518, 06.01.2023
https://doi.org/10.17341/gazimmfd.1008501

Abstract

Project Number

(BAP/M-764 kodlu proje)

References

  • [1] Manyi-Loh C., Mamphweli S., Meyer E., Okoh A., Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications, Molecules, 23 (4), 795, 2018, doi: 10.3390/molecules23040795.
  • [2] Burch K. D., Han B., Pichtel J., Zubkov T., Removal efficiency of commonly prescribed antibiotics via tertiary wastewater treatment, Environmental Science and Pollution Research, 26 (7), 6301-6310, 2019, doi: 10.1007/s11356-019-04170-w.
  • [3] Polianciuc S.I., Gurzău A.E., Kiss B., Georgia Ștefan M., Loghin F., Antibiotics in the environment: causes and consequences, Medicine and Pharmacy Reports, 93 (3), 231-240, 2020, doi: 10.15386/mpr-1742.
  • [4] Huang A., Yan M., Lin J., Xu L., Gong H., Gong H., A review of processes for removing antibiotics from breeding wastewater, International Journal of Environmental Research and Public Health, 18(9), 4909, 2021, doi: 10.3390/ijerph18094909.
  • [5] Gopal G., Alex S.A., Chandrasekaran N., Mukherjee A., A review on tetracycline removal from aqueous systems by advanced treatment techniques, RSC Advances, 10(45), 27081-27095, 2020, doi: 10.1039/d0ra04264a.
  • [6] Vu T.H., Ngo T.H.V., Duong T.T.A., Nguyen T.H. L., Mai X.T. et al., Removal of Tetracycline from Aqueous Solution Using Nanocomposite Based on Polyanion-Modified Laterite Material,” Journal of Analytical Methods in Chemistry, 2020, 6623511, 2020, doi: 10.1155/2020/6623511.
  • [7] Martínez-Olivas A., Torres-Pérez J., Balderas-Hernández P., Reyes-López S.Y., Oxytetracycline Sorption onto Synthetized Materials from Hydroxyapatite and Aluminosilicates, Water, Air, and Soil Pollution, 231(264), 2020, doi: 10.1007/s11270-020-04638-3.
  • [8] Lye J.W.P., Saman N., Sharuddin S.S.N., Othman N.S., Mohtar, S.S. et al., Removal Performance of Tetracycline and Oxytetracycline From Aqueous Solution Via Natural Zeolites: An Equilibrium and Kinetic Study, Clean, Soil, Air, Water, 45 (10), 1600260, 2017, doi: 10.1002/clen.201600260.
  • [9] Yu F., Li Y., Han S., Ma J., Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153, 365-385, 2016, doi: 10.1016/j.chemosphere.2016.03.083.
  • [10] Fang Li M., Guo Liu Y., Ming Zeng G., Liu N., Bo Liu S., Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review, Chemosphere, 226, 360-380, 2019, doi: 10.1016/j.chemosphere.2019.03.117.
  • [11] Azhar M.R., Abid H.R., Periasamy V., Sun H., Tade M.O., Wang S., Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment, Journal of Colloid and Interface Science, 500, 88-95, 2017, doi: 10.1016/j.jcis.2017.04.001.
  • [12] Ersan M., Guler U.A., Acikel U., Sarioglu M., Synthesis of hydroxyapatite/clay and hydroxyapatite/pumice composites for tetracycline removal from aqueous solutions, Process Safety and Environmental Protection, 96, 22-32, 2015, doi: 10.1016/j.psep.2015.04.001.
  • [13] Pi S., Li A., Wei W., Feng L., Zhang G. et al., Synthesis of a novel magnetic nano-scale biosorbent using extracellular polymeric substances from Klebsiella sp. J1 for tetracycline adsorption,” Bioresource Technology, 245(Pt A), 471-476, 2017, doi: 10.1016/j.biortech.2017.08.190.
  • [14] Santaeufemia S., Torres E., Mera R., Abalde J., Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum, Journal of Hazardous Materials, 320, 315-325, 2016, doi: 10.1016/j.jhazmat.2016.08.042.
  • [15] Li Zou Y., Huang H., Chu M., Lin J., Giang Yin D., Nan Li Y., Adsorption research of tetracycline from water by HCl-modified zeolite, Advanced Materials Research, 573–574, 43-47, 2012, doi: 10.4028/www.scientific.net/AMR.573-574.43.
  • [16] Wu M., Zhao S., Tang M., Jing R., Shao Y. et al., Adsorption of sulfamethoxazole and tetracycline on montmorillonite in single and binary systems, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 575, 264-270, 2019, doi: 10.1016/j.colsurfa.2019.05.025.
  • [17] Jannat Abadi M.H., Nouri S.M.M., Zhiani R., Heydarzadeh H.D., Motavalizadehkakhky A., Removal of tetracycline from aqueous solution using Fe-doped zeolite, International Journal of Industrial Chemistry, 10(4), 291-300, 2019, doi: 10.1007/s40090-019-0191-6.
  • [18] Guo Y., Huang W., Chen B., Zhao Y., Liu D. et al., Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism, Journal of Hazardous Materials, 339, 22-32, 2017, doi: 10.1016/j.jhazmat.2017.06.006.
  • [19] de Sousa D.N.R., Insa S., Mozeto A.A., Petrovic M., Chaves T.F., Fadini P.S., Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites, Chemosphere, 205,137-146, 2018, doi: 10.1016/j.chemosphere.2018.04.085.
  • [20] Huang L., Sun Y., Wang W., Yue Q., Yang T., Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC), Chemical Engineering Journal, 171 (3), 1446-1453, 2011, doi: 10.1016/j.cej.2011.05.041.
  • [21] Li N., Zhou L., Jin X., Owens G., Chen Z., Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework, Journal of Hazardous Materials, 366, 563-572, 2019, doi: 10.1016/j.jhazmat.2018.12.047.
  • [22] de F. Silva C.E., da Gama B.M.V., da S. Gonçalves A.H., Medeiros J.A., de S. Abud A.K., Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength, Journal of King Saud University- Engineering Sciences, 32(6), 351-359, 2020, doi: 10.1016/j.jksues.2019.04.006.
  • [23] Harja M., Ciobanu G., Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Science of the Total Environment, 628–629, 36-43, 2018, doi: 10.1016/j.scitotenv.2018.02.027.
  • [24] Wang Y., Gong S., Li Y., Li Z., Fu J., Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust, Scientific Reports, 10(1), 2960, 2020, doi: 10.1038/s41598-020-59850-2.
  • [25] Zhou Y., Liu X., Xiang Y., Wang P., Zhang J. et al., Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling, Bioresource Technology, 245, 266-273, 2017, doi: 10.1016/j.biortech.2017.08.178.
  • [26] Bayat M., Javanbakht V., Esmaili J., Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye, International Journal of Biological Macromolecules, 116, 607-619, 2018, doi: 10.1016/j.ijbiomac.2018.05.012.
  • [27] Chang J., Ma J., Zhang D., Qiao N., Hu M. et al., Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite, Applied Clay Science, 119(1), 132-140, 2016, doi: 10.1016/j.clay.2015.06.038.
  • [28] Yu B., Bai Y., Ming Z., Yang H., Chen L. et al., Adsorption behaviors of tetracycline on magnetic graphene oxide sponge, Materials Chemistry and Physics, 198, 298-290, 2017, doi: 10.1016/j.matchemphys.2017.05.042.
  • [29] Yu R., Yu X., Xue B., Liao J., Zhu W., Fu J., Adsorption of oxytetracycline from aquaculture wastewater by modified carbon nanotubes: kinetics, isotherms and thermodynamics, Fullerenes Nanotubes and Carbon Nanostructures, 29(1), 28-38, 2021, doi: 10.1080/1536383X.2020.1806248.
  • [30] Mersin G., Açıkel Ü., Levent M., Efficient adsorption of Basic Blue 41 from textile wastewaters by natural and magnetically modified Manisa-Gördes clinoptilolite, Chemical Engineering and Processing - Process Intensification, 169, 108632, 2021, doi: 10.1016/j.cep.2021.108632.
  • [31] Juengchareonpoon K., Boonamnuayvitaya V., Wanichpongpan P., Kinetics and isotherms of oxytetracycline adsorption on β-cyclodextrin/carboxymethylcellulose hydrogel films, Aquaculture Research, 50(11), 3412-3419, 2019, doi: 10.1111/are.14299.
  • [32] Andrade C.A., Zambrano-Intriago L.A., Oliveira N.S., Vieira J.S, Quiroz-Fernández L.S., Rodríguez-Díaz J.M., Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process, Water, Air, and Soil Pollution, 231(103), 2020, doi: 10.1007/s11270-020-04473-6.
  • [33] Algothmi W.M., Bandaru N.M., Yu Y., Shapter J. G., Ellis A.V., Alginate-graphene oxide hybrid gel beads: An efficient copper adsorbent material, Journal of Colloid and Interface Science, 397, 32-38, 2013, doi: 10.1016/j.jcis.2013.01.051.
  • [34] Wang C.T., Chou W.L., Chung M.H., Kuo Y.M., COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination, 253(1–3), 129-134, 2010, doi: 10.1016/j.desal.2009.11.020.
  • [35] Li Y., Du Q., Liu T., Sun J., Jiao Y. et al., Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene, Materials Research Bulletin, 47(8), 1898-1904, 2012, doi: 10.1016/j.materresbull.2012.04.021.
  • [36] Song Y., Sackey E.A., Wang H., Wang H., Adsorption of oxytetracycline on kaolinite, PLoS ONE, 14(11), 2019, doi: 10.1371/journal.pone.0225335.
  • [37] Eniola J.O., Kumar R., Mohamed O.A., Al-Rashdi A.A., Barakat M.A., Synthesis and characterization of CuFe2O4/NiMgAl-LDH composite for the efficient removal of oxytetracycline antibiotic, Journal of Saudi Chemical Society, 24(1), 139-150, 2020, doi: 10.1016/j.jscs.2019.11.001.
  • [38] Edet U.A., Ifelebuegu A.O., Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste, Processes, 8(6), 665, 2020, doi: 10.3390/PR8060665.
  • [39] Kragović M., Daković A., Marković M., Krstić J., Gatta G.D., Rotiroti N., Characterization of lead sorption by the natural and Fe(III)-modified zeolite, Applied Surface Science, 283, 764-774 2013, doi: 10.1016/j.apsusc.2013.07.016.
  • [40] Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso, F. et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9–10),1051-1069, 2015, doi: 10.1515/pac-2014-1117.
  • [41] Yudha S.S., Adfa M., Falahudin A., Eco-friendly coating of natural zeolite with metallic gold, and characterization of the resulting products, Oriental Journal of Chemistry, 34(1), 2018, doi: 10.13005/ojc/340160.
  • [42] Rahmani F., Haghighi M., Amini M., The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene, Journal of Industrial and Engineering Chemistry, 31, 142-155, 2015, doi: 10.1016/j.jiec.2015.06.018.
  • [43] Thangadurai S., Abraham J.T., Srivastava A.K., Nataraja Moorthy M., Shukla S.K., Anjaneyulu Y., X-ray powder diffraction patterns for certain β-lactam, tetracycline and macrolide antibiotic drugs, Analytical Sciences, 21(7), 833-838, 2005, doi: 10.2116/analsci.21.833.
  • [44] Bueno M.S., Miñambres G.G., Bongioanni A., Chattah A.K., Aiassa V. et al., Exploring solid forms of oxytetracycline hydrochloride, International Journal of Pharmaceutics, 585, 119496, 2020, doi: 10.1016/j.ijpharm.2020.119496.
  • [45] Mohseni-Bandpi A., Al-Musawi T.J., Ghahramani E., Zarrabi M., Mohebi S., Vahed S.A, Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles, Journal of Molecular Liquids, 218, 615-624, 2016, doi: 10.1016/j.molliq.2016.02.092.
  • [46] Nosrati R., Olad A., Nofouzi K., A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2 /Ag-exchanged-zeolite-A nanocomposite, Applied Surface Science, 346, 543-553, 2015, doi: 10.1016/j.apsusc.2015.04.056.
  • [47] Chakarova K., Hadjiivanov K., FTIR study of N2 and CO adsorption on H-D-FER, Microporous and Mesoporous Materials, 177, 59-65, 2013, doi: 10.1016/j.micromeso.2013.04.022.
  • [48] Samarghandi M.R., Al-Musawi T.J., Mohseni-Bandpi A., Zarrabi M., Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles, Journal of Molecular Liquids, 211, 431-441, 2015, doi: 10.1016/j.molliq.2015.06.067.
  • [49] Li Z., Kolb V.M.K., Jiang W.T., Hong H., FTIR and XRD investigations of tetracycline intercalation in smectites, Clays and Clay Minerals, 58, 462-474, 2010, doi: 10.1346/CCMN.2010.0580402.
  • [50] Wan D., Wu L., Liu Y., Chen J., Zhao H., Xiao S., Enhanced Adsorption of Aqueous Tetracycline Hydrochloride on Renewable Porous Clay-Carbon Adsorbent Derived from Spent Bleaching Earth via Pyrolysis, Langmuir, 35(11), 3925-3936, 2019, doi: 10.1021/acs.langmuir.8b04179.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Gülşah Başkan 0000-0002-2852-6114

Unsal Açıkel 0000-0003-4969-8502

Menderes Levent 0000-0002-6363-1614

Project Number (BAP/M-764 kodlu proje)
Publication Date January 6, 2023
Submission Date October 12, 2021
Acceptance Date July 16, 2022
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Başkan, G., Açıkel, U., & Levent, M. (2023). Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1505-1518. https://doi.org/10.17341/gazimmfd.1008501
AMA Başkan G, Açıkel U, Levent M. Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi. GUMMFD. January 2023;38(3):1505-1518. doi:10.17341/gazimmfd.1008501
Chicago Başkan, Gülşah, Unsal Açıkel, and Menderes Levent. “Oksitetrasiklin hidroklorürün doğal Zeolit Ile Sulu çözeltilerden Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 3 (January 2023): 1505-18. https://doi.org/10.17341/gazimmfd.1008501.
EndNote Başkan G, Açıkel U, Levent M (January 1, 2023) Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1505–1518.
IEEE G. Başkan, U. Açıkel, and M. Levent, “Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi”, GUMMFD, vol. 38, no. 3, pp. 1505–1518, 2023, doi: 10.17341/gazimmfd.1008501.
ISNAD Başkan, Gülşah et al. “Oksitetrasiklin hidroklorürün doğal Zeolit Ile Sulu çözeltilerden Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (January 2023), 1505-1518. https://doi.org/10.17341/gazimmfd.1008501.
JAMA Başkan G, Açıkel U, Levent M. Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi. GUMMFD. 2023;38:1505–1518.
MLA Başkan, Gülşah et al. “Oksitetrasiklin hidroklorürün doğal Zeolit Ile Sulu çözeltilerden Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, 2023, pp. 1505-18, doi:10.17341/gazimmfd.1008501.
Vancouver Başkan G, Açıkel U, Levent M. Oksitetrasiklin hidroklorürün doğal zeolit ile sulu çözeltilerden giderimi. GUMMFD. 2023;38(3):1505-18.