Research Article
BibTex RIS Cite

Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu

Year 2023, Volume: 38 Issue: 3, 1699 - 1710, 06.01.2023
https://doi.org/10.17341/gazimmfd.1050524

Abstract

Son yıllarda birçok gelişmiş ülkede çevresel nedenlerle biyokütle, kimyasal hammadde ve yenilenebilir enerji kaynağı olarak kullanılmaktadır. Bu çalışmada biyokütlenin pirolizi ile elde edilen katranın biyo yakıt özelliklerinin aydınlatılması amaçlanmıştır. Biyokütle kaynağı olarak Paulownia (P. elongata) ağacı seçilmiştir. Paulownia, hızlı büyüyen bir ağaç cinsidir, biyo yakıt hammaddesi olarak yetiştiriciliği yapılır ve avantajlı birçok özelliğinden dolayı endüstriyel uygulamalarda da kullanılmaktadır. Asya ülkelerinde özellikle mobilya ve süs eşyası yapımında yoğun olarak kullanılmaktadır. Bu tür üretimler sonrası oluşan atıkların biyoenerji ürünlerine dönüştürülme potansiyeli de oldukça yüksektir. Biyo yakıt üretimi için en sık uygulanan termokimyasal yöntem pirolizdir. Bu çalışmada, sürükleyici gaz akış hızı (N2) (0,05, 0,10, 0,2, 0,3 L/min) ve partikül boyutunun (0,224-0,425; 0,425-0,6; 0,6-0,85; 0,85-1; 1-1,8 mm) piroliz ürün verimleri üzerine etkisi 50°C/min ısıtma hızında ve 500°C sıcaklıkta incelenmiştir. 0,1 L/min sürükleyici gaz (N2) hızında ve 0,6-0,85 mm partikül boyutunda en yüksek katran verimine ulaşılmıştır. Bu koşullarda elde edilen katranın elementel analizi, FT-IR, 1H-NMR, GC-MS analizleri yapılmış ve katranın, hidrokarbonları, uzun zincirli karboksilik asit/esterleri, ketonları, fenolik bileşikleri ve onların türevlerini içerdiği gözlenmiştir. Zengin bir kimyasal içeriğe ve yüksek ısıl değere sahip katranın kimyasal hammadde kaynağı olarak ve katalitik iyileştirme sonrası sıvı yakıt olarak kullanılabileceği söylenebilir.

Supporting Institution

yok

Project Number

yok

References

  • 1. Önal, E.P., B.B. Uzun, and A.E. Pütün, Steam pyrolysis of an industrial waste for bio-oil production. Fuel Processing Technology, 2011. 92(5): p. 879-885.
  • 2. Adelawon, B., et al., Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy. Chemical Engineering Communications, 2021: p. 1-31.
  • 3. Balat, M.J.E.E. and Exploitation, Experimental study on pyrolysis of black alder wood. 2008. 26(4): p. 209-220.
  • 4. Zhang, Q., et al., Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007. 48(1): p. 87-92.
  • 5. Tsai, W., M. Lee, and Y. Chang, Fast pyrolysis of rice husk: Product yields and compositions. Bioresource technology, 2007. 98(1): p. 22-28.
  • 6. Ali, M.R., A.G.H. Saif, and S.S. Wahid, Investigating the Effect of Pyrolysis Parameters on Product Yields of Mixed Wood Sawdust in a Semi-Batch Reactor and its Characterization. Petroleum & Coal, 2020. 62(1).
  • 7. Djandja, O.o.S., et al., Pyrolysis of municipal sewage sludge for biofuel production: a review. Industrial & Engineering Chemistry Research, 2020. 59(39): p. 16939-16956.
  • 8. Matusiak, M., R. Ślęzak, and S. Ledakowicz, Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis. Energies, 2020. 13(15): p. 3977.
  • 9. Khuenkaeo, N. and N. Tippayawong, Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chemical Engineering Communications, 2020. 207(2): p. 153-160.
  • 10. ÖZBAY, G. and E.S. KÖKTEN, Modeling of bio-oil production by pyrolysis of woody biomass: artificial neural network approach. Politeknik Dergisi, 2020. 23(4): p. 1255-1264.
  • 11. Chen, L., et al., Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste. Applied Thermal Engineering, 2017. 111: p. 834-846.
  • 12. Zhong, C. and X. Wei, A comparative experimental study on the liquefaction of wood. Energy, 2004. 29(11): p. 1731-1741.
  • 13. Mohan, D., et al., Pyrolysis of wood/biomass for bio-oil: a critical review. 2006. 20(3): p. 848-889.
  • 14. Zhao, Q., et al., Thermochemical conversion of birch bark by temperature-programmed slow pyrolysis with fractional condensation. Journal of Analytical and Applied Pyrolysis, 2020. 150: p. 104843.
  • 15. Vitolo, S., et al., Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel, 2001. 80(1): p. 17-26.
  • 16. McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource technology, 2002. 83(1): p. 37-46.
  • 17. Haryanto, A., et al., Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies, 2021. 14(5): p. 1407.
  • 18. Sahoo, K., A. Kumar, and J.P. Chakraborty, A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 2021. 23(1): p. 186-204.
  • 19. Heo, H.S., et al., Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource technology, 2010. 101(1): p. S91-S96.
  • 20. Rodríguez-Seoane, P., et al., Potential of Paulownia sp. for biorefinery. Industrial Crops and Products, 2020. 155: p. 112739.
  • 21. Vaughn, S.F., et al., Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Industrial Crops and Products, 2017. 97: p. 260-267.
  • 22. Wang, Y., et al., Continuous hydrogen production by dark and photo co-fermentation using a tubular multi-cycle bio-reactor with Paulownia biomass. Cellulose, 2019. 26(15): p. 8429-8438.
  • 23. Şensöz, S. and M. Can, Pyrolysis of Pine ( Pinus Brutia Ten.) Chips: 1. Effect of Pyrolysis Temperature and Heating Rate on the Product Yields. Energy Sources, 2002. 24(4): p. 347-355.
  • 24. Demirbaş, A.J.F., Calculation of higher heating values of biomass fuels. 1997. 76(5): p. 431-434.
  • 25. Parikh, J., S. Channiwala, and G. Ghosal, A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 2005. 84(5): p. 487-494.
  • 26. Sun, P., et al., Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy, 2010. 35(12): p. 5421-5429.
  • 27. Yorgun, S. and D. Yıldız, Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. Journal of Analytical and Applied Pyrolysis, 2015. 114: p. 68-78.
  • 28. Ates, S., et al., Characterization and evaluation of Paulownia elongota as a raw material for paper production. African journal of biotechnology, 2008. 7(22).
  • 29. García, J.C., et al., Paulownia as a raw material for the production of pulp by soda-anthraquinone cooking with or without previous autohydrolysis. Journal of Chemical Technology & Biotechnology, 2011. 86(4): p. 608-615.
  • 30. Sun, P., et al., Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water. Energy Conversion and Management, 2011. 52(2): p. 924-933.
  • 31. Ahmed, A., et al., Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Conversion and Management, 2020. 226: p. 113502.
  • 32. Sinha, S., et al., Modelling of pyrolysis in wood: a review. SESI Journal, 2000. 10(1): p. 41-62.
  • 33. Di Blasi, C., et al., Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. 2009. 48(7): p. 3359-3369.
  • 34. Villanueva, M., et al., Energetic characterization of forest biomass by calorimetry and thermal analysis. Journal of thermal analysis and calorimetry, 2011. 104(1): p. 61-67.
  • 35. Aysu, T. and M.M. Küçük, Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy, 2014. 64: p. 1002-1025.
  • 36. Wulandari, Y.R., et al., Effect of N2 flow rate on kinetic investigation of lignin pyrolysis. Environmental Research, 2020. 190: p. 109976.
  • 37. Pütün, E., Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 2010. 35(7): p. 2761-2766.
  • 38. Salehi, E., et al., Bio-oil from sawdust: Design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant. Energy & Fuels, 2013. 27(6): p. 3332-3340.
  • 39. Park, Y.-K., et al., Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renewable Energy, 2012. 42: p. 125-130.
  • 40. CUI, L.-j., W.-g. LIN, and J.-z. YAO, Influences of temperature and coal particle size on the flash pyrolysis of coal in a fast-entrained bed. Chemical Research in Chinese Universities, 2006. 22(1): p. 103-110.
  • 41. Luo, S., et al., Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International journal of hydrogen energy, 2010. 35(1): p. 93-97.
  • 42. Encinar, J., et al., Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy, 1996. 11(5): p. 397-409.
  • 43. Wang, X., et al., Biomass pyrolysis in a fluidized bed reactor. Part 2: Experimental validation of model results. Industrial & engineering chemistry research, 2005. 44(23): p. 8786-8795.
  • 44. Shen, J., et al., Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009. 88(10): p. 1810-1817.
  • 45. Savage, P., R. Levine, and C. Huelsman, Hydrothermal processing of biomass. Thermochemical conversion of biomass to liquid fuels and chemicals, 2010: p. 192-221.
  • 46. Bulushev, D.A. and J.R. Ross, Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catalysis today, 2011. 171(1): p. 1-13.
  • 47. Nilsen, M.H., et al., Investigation of the effect of metal sites in Me–Al-MCM-41 (Me=Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass. Microporous and Mesoporous Materials, 2007. 105(1-2): p. 189-203.
  • 48. Rutkowski, P., Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Processing Technology, 2011. 92(3): p. 517-522.
  • 49. Yorgun, S. and H.S. GÜLbaran TÜLbentÇİ, Pyrolysis of Sunflower Press Bagasse: Heating Values and Energy Distribution of the Pyrolysis Products. Energy Sources, 2003. 25(8): p. 809-817.
  • 50. Özbay, G., A. Özçifçi, and S. Karagöz, Catalytic pyrolysis of waste melamine coated chipboard. Environmental Progress & Sustainable Energy, 2013. 32(1): p. 156-161.
  • 51. Thangalazhy-Gopakumar, S., et al., Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresource technology, 2010. 101(21): p. 8389-8395.
  • 52. Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 2012. 38: p. 68-94.
  • 53. Bridgwater, T., Biomass for energy. Journal of the Science of Food and Agriculture, 2006. 86(12): p. 1755-1768.
  • 54. Agblevor, F.A., et al., Fractional catalytic pyrolysis of hybrid poplar wood. 2010. 49(8): p. 3533-3538.
  • 55. El-barbary, M.H., P.H. Steele, and L. Ingram, Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied biochemistry and biotechnology, 2009. 154(1): p. 3-13.
  • 56. Branca, C., et al., GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. 2003. 42(14): p. 3190-3202.
  • 57. Xu, C., N.J.E. Lad, and Fuels, Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. 2007. 22(1): p. 635-642.
  • 58. Huber, G.W., S. Iborra, and A.J.C.r. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. 2006. 106(9): p. 4044-4098.
  • 59. Sınaǧ, A., et al., Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. 2003. 42(15): p. 3516-3521.
  • 60. Karagoz, S., et al., Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel, 2005. 84(7-8): p. 875-884.
  • 61. Ingemarsson, Å., et al., Slow pyrolysis of spruce and pine samples studied with GC/MS and GC/FTIR/FID. 1998. 36(14): p. 2879-2889.
  • 62. Butt, D.A.E., Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata). Journal of Analytical and Applied Pyrolysis, 2006. 76(1-2): p. 38-47.
Year 2023, Volume: 38 Issue: 3, 1699 - 1710, 06.01.2023
https://doi.org/10.17341/gazimmfd.1050524

Abstract

Project Number

yok

References

  • 1. Önal, E.P., B.B. Uzun, and A.E. Pütün, Steam pyrolysis of an industrial waste for bio-oil production. Fuel Processing Technology, 2011. 92(5): p. 879-885.
  • 2. Adelawon, B., et al., Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy. Chemical Engineering Communications, 2021: p. 1-31.
  • 3. Balat, M.J.E.E. and Exploitation, Experimental study on pyrolysis of black alder wood. 2008. 26(4): p. 209-220.
  • 4. Zhang, Q., et al., Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007. 48(1): p. 87-92.
  • 5. Tsai, W., M. Lee, and Y. Chang, Fast pyrolysis of rice husk: Product yields and compositions. Bioresource technology, 2007. 98(1): p. 22-28.
  • 6. Ali, M.R., A.G.H. Saif, and S.S. Wahid, Investigating the Effect of Pyrolysis Parameters on Product Yields of Mixed Wood Sawdust in a Semi-Batch Reactor and its Characterization. Petroleum & Coal, 2020. 62(1).
  • 7. Djandja, O.o.S., et al., Pyrolysis of municipal sewage sludge for biofuel production: a review. Industrial & Engineering Chemistry Research, 2020. 59(39): p. 16939-16956.
  • 8. Matusiak, M., R. Ślęzak, and S. Ledakowicz, Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis. Energies, 2020. 13(15): p. 3977.
  • 9. Khuenkaeo, N. and N. Tippayawong, Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chemical Engineering Communications, 2020. 207(2): p. 153-160.
  • 10. ÖZBAY, G. and E.S. KÖKTEN, Modeling of bio-oil production by pyrolysis of woody biomass: artificial neural network approach. Politeknik Dergisi, 2020. 23(4): p. 1255-1264.
  • 11. Chen, L., et al., Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste. Applied Thermal Engineering, 2017. 111: p. 834-846.
  • 12. Zhong, C. and X. Wei, A comparative experimental study on the liquefaction of wood. Energy, 2004. 29(11): p. 1731-1741.
  • 13. Mohan, D., et al., Pyrolysis of wood/biomass for bio-oil: a critical review. 2006. 20(3): p. 848-889.
  • 14. Zhao, Q., et al., Thermochemical conversion of birch bark by temperature-programmed slow pyrolysis with fractional condensation. Journal of Analytical and Applied Pyrolysis, 2020. 150: p. 104843.
  • 15. Vitolo, S., et al., Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel, 2001. 80(1): p. 17-26.
  • 16. McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource technology, 2002. 83(1): p. 37-46.
  • 17. Haryanto, A., et al., Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies, 2021. 14(5): p. 1407.
  • 18. Sahoo, K., A. Kumar, and J.P. Chakraborty, A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 2021. 23(1): p. 186-204.
  • 19. Heo, H.S., et al., Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource technology, 2010. 101(1): p. S91-S96.
  • 20. Rodríguez-Seoane, P., et al., Potential of Paulownia sp. for biorefinery. Industrial Crops and Products, 2020. 155: p. 112739.
  • 21. Vaughn, S.F., et al., Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Industrial Crops and Products, 2017. 97: p. 260-267.
  • 22. Wang, Y., et al., Continuous hydrogen production by dark and photo co-fermentation using a tubular multi-cycle bio-reactor with Paulownia biomass. Cellulose, 2019. 26(15): p. 8429-8438.
  • 23. Şensöz, S. and M. Can, Pyrolysis of Pine ( Pinus Brutia Ten.) Chips: 1. Effect of Pyrolysis Temperature and Heating Rate on the Product Yields. Energy Sources, 2002. 24(4): p. 347-355.
  • 24. Demirbaş, A.J.F., Calculation of higher heating values of biomass fuels. 1997. 76(5): p. 431-434.
  • 25. Parikh, J., S. Channiwala, and G. Ghosal, A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 2005. 84(5): p. 487-494.
  • 26. Sun, P., et al., Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy, 2010. 35(12): p. 5421-5429.
  • 27. Yorgun, S. and D. Yıldız, Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. Journal of Analytical and Applied Pyrolysis, 2015. 114: p. 68-78.
  • 28. Ates, S., et al., Characterization and evaluation of Paulownia elongota as a raw material for paper production. African journal of biotechnology, 2008. 7(22).
  • 29. García, J.C., et al., Paulownia as a raw material for the production of pulp by soda-anthraquinone cooking with or without previous autohydrolysis. Journal of Chemical Technology & Biotechnology, 2011. 86(4): p. 608-615.
  • 30. Sun, P., et al., Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water. Energy Conversion and Management, 2011. 52(2): p. 924-933.
  • 31. Ahmed, A., et al., Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Conversion and Management, 2020. 226: p. 113502.
  • 32. Sinha, S., et al., Modelling of pyrolysis in wood: a review. SESI Journal, 2000. 10(1): p. 41-62.
  • 33. Di Blasi, C., et al., Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. 2009. 48(7): p. 3359-3369.
  • 34. Villanueva, M., et al., Energetic characterization of forest biomass by calorimetry and thermal analysis. Journal of thermal analysis and calorimetry, 2011. 104(1): p. 61-67.
  • 35. Aysu, T. and M.M. Küçük, Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy, 2014. 64: p. 1002-1025.
  • 36. Wulandari, Y.R., et al., Effect of N2 flow rate on kinetic investigation of lignin pyrolysis. Environmental Research, 2020. 190: p. 109976.
  • 37. Pütün, E., Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 2010. 35(7): p. 2761-2766.
  • 38. Salehi, E., et al., Bio-oil from sawdust: Design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant. Energy & Fuels, 2013. 27(6): p. 3332-3340.
  • 39. Park, Y.-K., et al., Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renewable Energy, 2012. 42: p. 125-130.
  • 40. CUI, L.-j., W.-g. LIN, and J.-z. YAO, Influences of temperature and coal particle size on the flash pyrolysis of coal in a fast-entrained bed. Chemical Research in Chinese Universities, 2006. 22(1): p. 103-110.
  • 41. Luo, S., et al., Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International journal of hydrogen energy, 2010. 35(1): p. 93-97.
  • 42. Encinar, J., et al., Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy, 1996. 11(5): p. 397-409.
  • 43. Wang, X., et al., Biomass pyrolysis in a fluidized bed reactor. Part 2: Experimental validation of model results. Industrial & engineering chemistry research, 2005. 44(23): p. 8786-8795.
  • 44. Shen, J., et al., Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009. 88(10): p. 1810-1817.
  • 45. Savage, P., R. Levine, and C. Huelsman, Hydrothermal processing of biomass. Thermochemical conversion of biomass to liquid fuels and chemicals, 2010: p. 192-221.
  • 46. Bulushev, D.A. and J.R. Ross, Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catalysis today, 2011. 171(1): p. 1-13.
  • 47. Nilsen, M.H., et al., Investigation of the effect of metal sites in Me–Al-MCM-41 (Me=Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass. Microporous and Mesoporous Materials, 2007. 105(1-2): p. 189-203.
  • 48. Rutkowski, P., Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Processing Technology, 2011. 92(3): p. 517-522.
  • 49. Yorgun, S. and H.S. GÜLbaran TÜLbentÇİ, Pyrolysis of Sunflower Press Bagasse: Heating Values and Energy Distribution of the Pyrolysis Products. Energy Sources, 2003. 25(8): p. 809-817.
  • 50. Özbay, G., A. Özçifçi, and S. Karagöz, Catalytic pyrolysis of waste melamine coated chipboard. Environmental Progress & Sustainable Energy, 2013. 32(1): p. 156-161.
  • 51. Thangalazhy-Gopakumar, S., et al., Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresource technology, 2010. 101(21): p. 8389-8395.
  • 52. Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 2012. 38: p. 68-94.
  • 53. Bridgwater, T., Biomass for energy. Journal of the Science of Food and Agriculture, 2006. 86(12): p. 1755-1768.
  • 54. Agblevor, F.A., et al., Fractional catalytic pyrolysis of hybrid poplar wood. 2010. 49(8): p. 3533-3538.
  • 55. El-barbary, M.H., P.H. Steele, and L. Ingram, Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied biochemistry and biotechnology, 2009. 154(1): p. 3-13.
  • 56. Branca, C., et al., GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. 2003. 42(14): p. 3190-3202.
  • 57. Xu, C., N.J.E. Lad, and Fuels, Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. 2007. 22(1): p. 635-642.
  • 58. Huber, G.W., S. Iborra, and A.J.C.r. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. 2006. 106(9): p. 4044-4098.
  • 59. Sınaǧ, A., et al., Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. 2003. 42(15): p. 3516-3521.
  • 60. Karagoz, S., et al., Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel, 2005. 84(7-8): p. 875-884.
  • 61. Ingemarsson, Å., et al., Slow pyrolysis of spruce and pine samples studied with GC/MS and GC/FTIR/FID. 1998. 36(14): p. 2879-2889.
  • 62. Butt, D.A.E., Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata). Journal of Analytical and Applied Pyrolysis, 2006. 76(1-2): p. 38-47.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Derya Yıldız 0000-0002-5628-8424

Project Number yok
Publication Date January 6, 2023
Submission Date December 29, 2021
Acceptance Date August 9, 2022
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Yıldız, D. (2023). Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1699-1710. https://doi.org/10.17341/gazimmfd.1050524
AMA Yıldız D. Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu. GUMMFD. January 2023;38(3):1699-1710. doi:10.17341/gazimmfd.1050524
Chicago Yıldız, Derya. “Paulownia Elongata Odununun Pirolizinde sürükleyici Gaz hızı Ve parçacık Boyutunun ürün Verimlerine Etkisi Ve Katran Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 3 (January 2023): 1699-1710. https://doi.org/10.17341/gazimmfd.1050524.
EndNote Yıldız D (January 1, 2023) Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1699–1710.
IEEE D. Yıldız, “Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu”, GUMMFD, vol. 38, no. 3, pp. 1699–1710, 2023, doi: 10.17341/gazimmfd.1050524.
ISNAD Yıldız, Derya. “Paulownia Elongata Odununun Pirolizinde sürükleyici Gaz hızı Ve parçacık Boyutunun ürün Verimlerine Etkisi Ve Katran Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (January 2023), 1699-1710. https://doi.org/10.17341/gazimmfd.1050524.
JAMA Yıldız D. Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu. GUMMFD. 2023;38:1699–1710.
MLA Yıldız, Derya. “Paulownia Elongata Odununun Pirolizinde sürükleyici Gaz hızı Ve parçacık Boyutunun ürün Verimlerine Etkisi Ve Katran Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, 2023, pp. 1699-10, doi:10.17341/gazimmfd.1050524.
Vancouver Yıldız D. Paulownia Elongata odununun pirolizinde sürükleyici gaz hızı ve parçacık boyutunun ürün verimlerine etkisi ve katran karakterizasyonu. GUMMFD. 2023;38(3):1699-710.