Research Article
BibTex RIS Cite

Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi

Year 2023, Volume: 38 Issue: 4, 2025 - 2032, 12.04.2023
https://doi.org/10.17341/gazimmfd.946218

Abstract

Bu çalışmada, orta kızılötesi bölgede çalışan çift bant rezonans frekansına sahip yeni bir plazmonik mükemmel soğurucu yapısı sunulmuştur. Yapının analizleri, ticari bir yazılım programı yardımıyla gerçekleştirilmiştir. Önerilen mükemmel soğurucu yapısı, gelen ışını düşük frekans modunda %98' in üzerinde ve yüksek frekans modunda % 99' un üzerinde soğurmaktadır. Soğurum mekanizmasında etkili bir rol oynayan iletken ve dielektrik tabaka kalınlıklarının değişimi incelenerek çalışmada kullanılacak olan kalınlık değerleri belirlenmiştir. Dielektrik tabaka üzerine konumlandırılmış nanoanten dizisinin geometrik parametreleri değiştirilerek bu parametrelerin rezonans modlara etkisi incelenmiş ve bu modların ayarlanabilirliği nanoanten dizisi için analiz edilmiştir. Polarizasyon bağımsızlığı üç farklı kutuplanma açısı için analiz edilmiştir. İncelenen açı değerlerinde yapının polarizasyondan bağımsız olduğu ortaya konmuştur. Çalışmada ayrıca yük yoğunluğu dağılımları ile rezonans modları için elektrik ve manyetik alan dağılımlarının soğurum spektrumları incelenmiştir. Ayarlanabilir spektral özellikleri, polarizasyon bağımsız olması, güçlendirilmiş elektrik ve manyetik cevapları sayesinde önerilen plazmonik mükemmel soğurucu, orta kızılötesi spektroskopi uygulamalarında kullanılabilir.

References

  • R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, pp. 77-79, Apr 6 2001.
  • A. E. Cetin, M. Turkmen, S. Aksu, and H. Altug, "Nanoparticle-Based Metamaterials as Multiband Plasmonic Resonator Antennas," Ieee Transactions on Nanotechnology, vol. 11, pp. 208-212, Jan 2012.
  • M. K. Anam and S. Choi, "Bowtie Nanoantenna Array Integrated With Artificial Impedance Surfaces for Realizing High Field Enhancement and Perfect Absorption Simultaneously," Ieee Access, vol. 8, pp. 99858-99869, 2020.
  • J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, pp. 3966-3969, Oct 30 2000.
  • K. Chen, R. Adato, and H. Altug, "Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy," Acs Nano, vol. 6, pp. 7998-8006, Sep 2012.
  • L. L. Shi, Q. Tang, Z. Q. Liu, Y. Liu, Y. Y. Li, G. Q. Liu, and L. Li, "Tunable dual-band plasmonic perfect absorber and its sensing applications," Journal of the Optical Society of America B-Optical Physics, vol. 36, pp. 2750-2756, Oct 1 2019.
  • H. X. Gao, W. Peng, Y. Z. Liang, S. W. Chu, L. Yu, Z. Liu, and Y. Zhang, "Plasmonic Broadband Perfect Absorber for Visible Light Solar Cells Application," Plasmonics, vol. 15, pp. 573-580, Apr 2020.
  • D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, "Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region," Nanoscale Research Letters, vol. 12, Jun 26 2017.
  • D. M. Nguyen, D. Lee, and J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths," Scientific Reports, vol. 7, Jun 1 2017.
  • D. Wu, Y. M. Liu, R. F. Li, L. Chen, R. Ma, C. Liu, and H. Ye, "Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor," Nanoscale Research Letters, vol. 11, Nov 2 2016.
  • E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, "Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array," Sensors and Actuators B-Chemical, vol. 243, pp. 617-625, May 2017.
  • G. M. Akselrod, J. N. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, "Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared," Advanced Materials, vol. 27, pp. 8028-8034, Dec 22 2015.
  • L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, "Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA)," Nano Letters, vol. 15, pp. 1272-1280, Feb 2015.
  • Z. Y. Li, S. Butun, and K. Aydin, "Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces," Acs Nano, vol. 8, pp. 8242-8248, Aug 2014.
  • J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, "Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances," Ieee Photonics Technology Letters, vol. 24, pp. 31-33, Jan 1 2012.
  • Y. Yao, J. Zhou, Z. Q. Liu, X. S. Liu, G. L. Fu, and G. Q. Liu, "Refractory materials and plasmonics based perfect absorbers," Nanotechnology, vol. 32, Mar 26 2021.
  • A. Alipour, A. Mir, and A. Farmani, "Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor," Optics and Laser Technology, vol. 127, Jul 2020.
  • A. Ninawe, A. Dhawan, and X. F. Xu, "Numerical investigation of a narrowband absorber with a simple structure," Osa Continuum, vol. 3, pp. 3582-3594, Dec 15 2020.
  • S. Mahmud, S. S. Islam, A. F. Almutairi, and M. T. Islam, "A Wide Incident Angle, Ultrathin, Polarization-Insensitive Metamaterial Absorber for Optical Wavelength Applications," Ieee Access, vol. 8, pp. 129525-129541, 2020.
  • F. Ali and S. Aksu, "A Narrow-Band Multi-Resonant Metamaterial in Near-IR," Materials, vol. 13, Nov 2020.
  • A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, "Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber," Advanced Optical Materials, vol. 4, pp. 1274-1280, Aug 2016.
  • S. Korkmaz, M. Turkmen, and S. Aksu, "Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy," Sensors and Actuators a-Physical, vol. 301, Jan 2020.
  • K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, "Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy," Advanced Functional Materials, vol. 25, pp. 6637-6643, Nov 11 2015.
  • E. Aslan, E. Aslan, M. Turkmen, and O. G. Saracoglu, "Metamaterial plasmonic absorber for reducing the spectral shift between near- and far-field responses in surface-enhanced spectroscopy applications," Sensors and Actuators a-Physical, vol. 267, pp. 60-69, Nov 1 2017.
  • J. Shu, W. L. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. F. Xu, "High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures," Optics Express, vol. 22, pp. 3747-3753, Feb 24 2014.
  • A. E. Serebryannikov, M. Beruete, M. Mutlu, and E. Ozbay, "Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling," Optics Express, vol. 23, pp. 13517-13529, May 18 2015.
  • M. Jahn, S. Patze, I. J. Hidi, R. Knipper, A. I. Radu, A. Muhlig, S. Yuksel, V. Peksa, K. Weber, T. Mayerhofer, D. Cialla-May, and J. Popp, "Plasmonic nanostructures for surface enhanced spectroscopic methods," Analyst, vol. 141, pp. 756-793, 2016.
  • Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, J. F. O'Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, "Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies," Scientific Reports, vol. 5, Dec 22 2015.
  • B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "A novel dual-band terahertz metamaterial absorber for a sensor application," Journal of Applied Physics, vol. 117, Jan 7 2015.
  • S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, Y. J. Zheng, and C. Zhang, "Multiband and broadband polarization - insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial," Optics Express, vol. 23, pp. 3523-3533, Feb 9 2015.
  • H. B. Baskey, M. J. Akhtar, A. K. Dixit, and T. C. Shami, "Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber," Journal of Electromagnetic Waves and Applications, vol. 29, pp. 2479-2491, Dec 12 2015.
  • Y. Q. Kang, P. Gao, H. M. Liu, and L. S. Gao, "A polarization-insensitive dual-band plasmonic metamaterial absorber for a sensor application," Physica Scripta, vol. 96, Jun 2021.
  • E. Aslan, E. Aslan, M. Turkmen, and O. G. Saracoglu, "Experimental and numerical characterization of a mid-infrared plasmonic perfect absorber for dual-band enhanced vibrational spectroscopy," Optical Materials, vol. 73, pp. 213-222, Nov 2017.
  • F. Chen, S. B. Cheng, and B. Sun, "Polarization independent septuple-band plasmonic perfect absorber based on hexagonal nanorods structure," Optik, vol. 224, Dec 2020.
  • Y. Z. Cheng and C. Y. Du, "Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region," Optical Materials, vol. 98, Dec 2019.
  • L. L. Shi, J. S. Shang, Z. Q. Liu, Y. Y. Li, G. L. Fu, X. S. Liu, P. P. Pan, H. M. Luo, and G. Q. Liu, "Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing," Nanotechnology, vol. 31, Nov 13 2020.
  • D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, "Polarization-sensitive tunable absorber in visible and near-infrared regimes," Scientific Reports, vol. 8, Aug 17 2018.
  • Finite-Difference-Time-Domain Package, Lumerical FDTD Solutions (2016) www.lumerical.com.
  • E. D. Palik and G. Ghosh, Handbook of optical constants of solids. San Diego: Academic Press, 1998.
Year 2023, Volume: 38 Issue: 4, 2025 - 2032, 12.04.2023
https://doi.org/10.17341/gazimmfd.946218

Abstract

References

  • R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, pp. 77-79, Apr 6 2001.
  • A. E. Cetin, M. Turkmen, S. Aksu, and H. Altug, "Nanoparticle-Based Metamaterials as Multiband Plasmonic Resonator Antennas," Ieee Transactions on Nanotechnology, vol. 11, pp. 208-212, Jan 2012.
  • M. K. Anam and S. Choi, "Bowtie Nanoantenna Array Integrated With Artificial Impedance Surfaces for Realizing High Field Enhancement and Perfect Absorption Simultaneously," Ieee Access, vol. 8, pp. 99858-99869, 2020.
  • J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, pp. 3966-3969, Oct 30 2000.
  • K. Chen, R. Adato, and H. Altug, "Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy," Acs Nano, vol. 6, pp. 7998-8006, Sep 2012.
  • L. L. Shi, Q. Tang, Z. Q. Liu, Y. Liu, Y. Y. Li, G. Q. Liu, and L. Li, "Tunable dual-band plasmonic perfect absorber and its sensing applications," Journal of the Optical Society of America B-Optical Physics, vol. 36, pp. 2750-2756, Oct 1 2019.
  • H. X. Gao, W. Peng, Y. Z. Liang, S. W. Chu, L. Yu, Z. Liu, and Y. Zhang, "Plasmonic Broadband Perfect Absorber for Visible Light Solar Cells Application," Plasmonics, vol. 15, pp. 573-580, Apr 2020.
  • D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, "Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region," Nanoscale Research Letters, vol. 12, Jun 26 2017.
  • D. M. Nguyen, D. Lee, and J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths," Scientific Reports, vol. 7, Jun 1 2017.
  • D. Wu, Y. M. Liu, R. F. Li, L. Chen, R. Ma, C. Liu, and H. Ye, "Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor," Nanoscale Research Letters, vol. 11, Nov 2 2016.
  • E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, "Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array," Sensors and Actuators B-Chemical, vol. 243, pp. 617-625, May 2017.
  • G. M. Akselrod, J. N. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, "Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared," Advanced Materials, vol. 27, pp. 8028-8034, Dec 22 2015.
  • L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, "Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA)," Nano Letters, vol. 15, pp. 1272-1280, Feb 2015.
  • Z. Y. Li, S. Butun, and K. Aydin, "Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces," Acs Nano, vol. 8, pp. 8242-8248, Aug 2014.
  • J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, "Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances," Ieee Photonics Technology Letters, vol. 24, pp. 31-33, Jan 1 2012.
  • Y. Yao, J. Zhou, Z. Q. Liu, X. S. Liu, G. L. Fu, and G. Q. Liu, "Refractory materials and plasmonics based perfect absorbers," Nanotechnology, vol. 32, Mar 26 2021.
  • A. Alipour, A. Mir, and A. Farmani, "Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor," Optics and Laser Technology, vol. 127, Jul 2020.
  • A. Ninawe, A. Dhawan, and X. F. Xu, "Numerical investigation of a narrowband absorber with a simple structure," Osa Continuum, vol. 3, pp. 3582-3594, Dec 15 2020.
  • S. Mahmud, S. S. Islam, A. F. Almutairi, and M. T. Islam, "A Wide Incident Angle, Ultrathin, Polarization-Insensitive Metamaterial Absorber for Optical Wavelength Applications," Ieee Access, vol. 8, pp. 129525-129541, 2020.
  • F. Ali and S. Aksu, "A Narrow-Band Multi-Resonant Metamaterial in Near-IR," Materials, vol. 13, Nov 2020.
  • A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, "Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber," Advanced Optical Materials, vol. 4, pp. 1274-1280, Aug 2016.
  • S. Korkmaz, M. Turkmen, and S. Aksu, "Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy," Sensors and Actuators a-Physical, vol. 301, Jan 2020.
  • K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, "Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy," Advanced Functional Materials, vol. 25, pp. 6637-6643, Nov 11 2015.
  • E. Aslan, E. Aslan, M. Turkmen, and O. G. Saracoglu, "Metamaterial plasmonic absorber for reducing the spectral shift between near- and far-field responses in surface-enhanced spectroscopy applications," Sensors and Actuators a-Physical, vol. 267, pp. 60-69, Nov 1 2017.
  • J. Shu, W. L. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. F. Xu, "High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures," Optics Express, vol. 22, pp. 3747-3753, Feb 24 2014.
  • A. E. Serebryannikov, M. Beruete, M. Mutlu, and E. Ozbay, "Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling," Optics Express, vol. 23, pp. 13517-13529, May 18 2015.
  • M. Jahn, S. Patze, I. J. Hidi, R. Knipper, A. I. Radu, A. Muhlig, S. Yuksel, V. Peksa, K. Weber, T. Mayerhofer, D. Cialla-May, and J. Popp, "Plasmonic nanostructures for surface enhanced spectroscopic methods," Analyst, vol. 141, pp. 756-793, 2016.
  • Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, J. F. O'Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, "Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies," Scientific Reports, vol. 5, Dec 22 2015.
  • B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "A novel dual-band terahertz metamaterial absorber for a sensor application," Journal of Applied Physics, vol. 117, Jan 7 2015.
  • S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, Y. J. Zheng, and C. Zhang, "Multiband and broadband polarization - insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial," Optics Express, vol. 23, pp. 3523-3533, Feb 9 2015.
  • H. B. Baskey, M. J. Akhtar, A. K. Dixit, and T. C. Shami, "Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber," Journal of Electromagnetic Waves and Applications, vol. 29, pp. 2479-2491, Dec 12 2015.
  • Y. Q. Kang, P. Gao, H. M. Liu, and L. S. Gao, "A polarization-insensitive dual-band plasmonic metamaterial absorber for a sensor application," Physica Scripta, vol. 96, Jun 2021.
  • E. Aslan, E. Aslan, M. Turkmen, and O. G. Saracoglu, "Experimental and numerical characterization of a mid-infrared plasmonic perfect absorber for dual-band enhanced vibrational spectroscopy," Optical Materials, vol. 73, pp. 213-222, Nov 2017.
  • F. Chen, S. B. Cheng, and B. Sun, "Polarization independent septuple-band plasmonic perfect absorber based on hexagonal nanorods structure," Optik, vol. 224, Dec 2020.
  • Y. Z. Cheng and C. Y. Du, "Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region," Optical Materials, vol. 98, Dec 2019.
  • L. L. Shi, J. S. Shang, Z. Q. Liu, Y. Y. Li, G. L. Fu, X. S. Liu, P. P. Pan, H. M. Luo, and G. Q. Liu, "Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing," Nanotechnology, vol. 31, Nov 13 2020.
  • D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, "Polarization-sensitive tunable absorber in visible and near-infrared regimes," Scientific Reports, vol. 8, Aug 17 2018.
  • Finite-Difference-Time-Domain Package, Lumerical FDTD Solutions (2016) www.lumerical.com.
  • E. D. Palik and G. Ghosh, Handbook of optical constants of solids. San Diego: Academic Press, 1998.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Kırlar 0000-0003-0290-1526

Mustafa Türkmen 0000-0002-5257-8256

Publication Date April 12, 2023
Submission Date June 1, 2021
Acceptance Date September 25, 2022
Published in Issue Year 2023 Volume: 38 Issue: 4

Cite

APA Kırlar, M., & Türkmen, M. (2023). Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2025-2032. https://doi.org/10.17341/gazimmfd.946218
AMA Kırlar M, Türkmen M. Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi. GUMMFD. April 2023;38(4):2025-2032. doi:10.17341/gazimmfd.946218
Chicago Kırlar, Mustafa, and Mustafa Türkmen. “Spektral Olarak Ayarlanabilir Ve Polarizasyon bağımsız çift Bant Plazmonik mükemmel soğurucunun sayısal Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 4 (April 2023): 2025-32. https://doi.org/10.17341/gazimmfd.946218.
EndNote Kırlar M, Türkmen M (April 1, 2023) Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 4 2025–2032.
IEEE M. Kırlar and M. Türkmen, “Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi”, GUMMFD, vol. 38, no. 4, pp. 2025–2032, 2023, doi: 10.17341/gazimmfd.946218.
ISNAD Kırlar, Mustafa - Türkmen, Mustafa. “Spektral Olarak Ayarlanabilir Ve Polarizasyon bağımsız çift Bant Plazmonik mükemmel soğurucunun sayısal Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (April 2023), 2025-2032. https://doi.org/10.17341/gazimmfd.946218.
JAMA Kırlar M, Türkmen M. Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi. GUMMFD. 2023;38:2025–2032.
MLA Kırlar, Mustafa and Mustafa Türkmen. “Spektral Olarak Ayarlanabilir Ve Polarizasyon bağımsız çift Bant Plazmonik mükemmel soğurucunun sayısal Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 4, 2023, pp. 2025-32, doi:10.17341/gazimmfd.946218.
Vancouver Kırlar M, Türkmen M. Spektral olarak ayarlanabilir ve polarizasyon bağımsız çift bant plazmonik mükemmel soğurucunun sayısal analizi. GUMMFD. 2023;38(4):2025-32.